

THE HILLS GRAMMAR SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE **EXAMINATION**

2003

MATHEMATICS

EXTENSION 2

Time Allowed:

Three hours (plus 5 minutes reading time)

Teacher Responsible:

Mr D Price

SPECIAL INSTRUCTIONS:

- This paper contains 8 questions. ALL questions to be attempted.
- ALL questions are of equal value.
- ALL necessary working should be shown in every question in the booklets provided.
- Start each question in a new booklet.
- A table of standard integrals is supplied at the back of this paper.
- Board approved calculators may be used.
- Hand up your paper in ONE bundle, together with this question paper.
- ALL HSC course outcomes are being assessed in this task. The Course Outcomes are listed on the back of this sheet.

Students are advised that this is a Trial Examination only and cannot in any way guarantee the content or the format of the Higher School Certificate Examination.

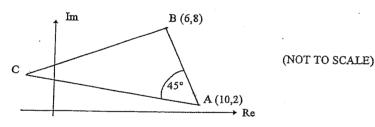
(a) Let $z = 2(\cos \frac{2\pi}{9} + i \sin \frac{2\pi}{9})$

(c)

8

3

- (i) Write down the modulus and argument of the complex numbers z, \bar{z}, z^2 , and $\frac{1}{z}$
- (ii) Hence, or otherwise, clearly plot the points on an Argand diagram corresponding to z, \bar{z} , z^2 , and $\frac{1}{z}$ labelling them A, B, C and D respectively.
- (b) Find the two square roots of -3 + 4i expressing each root in the form a + ib where a, b are real.



 \triangle ABC is drawn on the Argand plane where angle BAC = 45°, A represents the complex number 10 + 2i and B represents 6 + 8i.

If the length of side AC is twice the length of AB then find the complex number that point C represents.

(a)	For the hyperbola	$9x^2 - 16x^2$	-144 find
()	- or the hypotocia	22 - LUY	- 144 IMI

7

(i) eccentricity

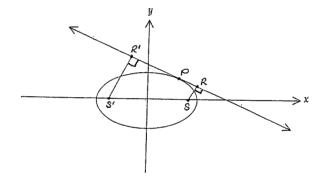
Question 3 (Start a NEW booklet)

- (ii) co-ordinates of the foci
- (iii) equations of the directrices
- (iv) equation of the asymptotes

Hence, sketch this hyperbola showing the foci, directrices and asymptotes.

(b)

8

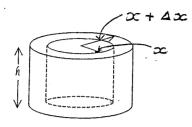


Consider the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a > b > 0.

- (i) Show that the tangent to the ellipse at the point $P(a \cos \theta, b \sin \theta)$ has equation $b x \cos \theta + a y \sin \theta = a b$.
- (ii) R and R' are the feet of the perpendiculars from the foci S and S' on to the tangent at P. Show that $SR \cdot S'R' = b^2$:

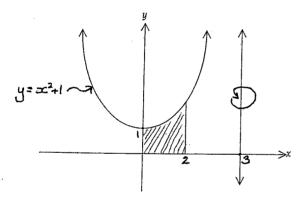
8

(a) (i)



Show that the volume of a cylindrical shell of height h cm with inner and outer radii x cm and $(x + \Delta x)$ cm respectively is $2\pi x h \Delta x$ cm³ when terms involving $(\Delta x)^2$ can be neglected.

(ii)



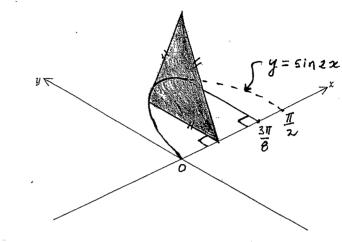
The region bounded by the curve $y = x^2 + 1$, the line x = 2 and the co-ordinate axes is rotated about the line x = 3 to form a solid of revolution.

Show that the volume V of the solid is given by $V = 2\pi \int_0^2 (3-x)(x^2+1) dx$.

Hence find V.

(b)

Question 4 continued



The base of a certain solid is the region between the x-axis and the curve $y = \sin x$ between x = 0 and $x = \frac{3\pi}{8}$.

Each plane section of the solid perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid. An example of such a plane section is shown in the diagram above.

Show that the volume V of this solid is given by $V = \frac{\sqrt{3}}{4} \int_0^{\frac{3\pi}{8}} \sin^2 2x \ dx$.

Hence, evaluate V correct to two significant figures.

Question 6	(Start a NEW	booklet)
------------	--------------	----------

Marks

Question 5	(Start a	NEW	booklet)
------------	----------	-----	----------

Marks

(a) A particle moving along the x-axis has position x(t) at time t seconds. If v(x) is the velocity of this particle at position x then show that

2

$$\frac{d^2x}{dt^2} = v\frac{dv}{dx}$$

(b) A particle of mass 1 kg is moving along the x-axis and experiences a resistive force of magnitude kv^2 where k > 0 is a constant and ν is the speed of the particle.

13

- (i) Find v as a function of time, t, given that the initial speed is 1 ms^{-1} .
- (ii) Find v as a function of position, x, given that at x = 0 the speed is 1 ms^{-1} .
- (iii) Suppose now that a variable pushing force of magnitude $\frac{c}{v}$ (where c > 0 is a constant) as well as the resistive force of magnitude kv^2 is acting on this particle.
 - (a) Show that the terminal velocity V is given by $V^3 = \frac{c}{k}$.
 - (β) Show that $\frac{dv}{dx} = c(\frac{1}{v^2} \frac{v}{V^3})$.
 - (y) Hence, find v as a function of x, given that $v = \frac{V}{2}$ when x = 0.

(a) On the same diagram, sketch the graphs (without the use of calculus) of:

7

$$y = \frac{1}{x^2 + 1}$$
 and $y = \frac{x^2}{x^2 + 1}$.

Mark on your diagram the co-ordinates of the intersection points of these two graphs.

ii) On the diagram in (a)(i) above, shade the region R where

 $\frac{1}{x^2+1} \ge \frac{x^2}{x^2+1}$. Find the area of R.

(b) Let the functions g(x) and f(x) be defined as follows:

6

$$g(x) = \frac{1}{4} (4+x)(2-x)$$

<u>@</u>

472 2.2

$$f(x) = \begin{cases} g(x) & \text{for } x < 0 \\ g(-x) & \text{for } x \ge 0 \end{cases}$$

- (i) By first sketching y = g(x), make a neat sketch of y = f(x) showing the co-ordinates of all critical points (i.e. where f'(x) = 0 or f'(x) is undefined).
- (ii) Hence, or otherwise, sketch the graph of y = f'(x).
- (c) By considering symmetry, draw a neat sketch of the graph |x| |y| = 1.

5

5

(a) (i) Let the polynomial $P(x) = (x - \alpha)^3 Q(x)$ where Q(x) is also a polynomial and α is a real zero of P(x).

Show that $P'(\alpha) = P''(\alpha) = 0$.

(ii) Hence, or otherwise, solve the equation

$$2x^4 + 9x^3 + 6x^2 - 20x - 24 = 0$$

given that it has a triple root (i.e. a root of multiplicity 3).

(b) Let α , β , γ be the roots of the equation $x^3 - 5x + 7 = 0$.

(i) Find $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.

(ii) Find the equation whose roots are $2\alpha - 1$, $2\beta - 1$, $2\gamma - 1$. Hence, or otherwise, find the value of

$$(2\alpha-1)(2\beta-1)+(2\beta-1)(2\gamma-1)+(2\alpha-1)(2\gamma-1)$$
.

(c) Let P(x) be a polynomial with $P(-\frac{1}{2}) = 3$. When P(x) is divided by (x-4) the remainder is -1.

Find the polynomial R(x) of minimum degree such that P(x) = (x-4)(2x+1)Q(x) + R(x) where Q(x) is a polynomial.

(a) Let $I_n = \int_0^1 (1-t^2)^{\frac{n-1}{2}} dt$ where n = 0, 1, 2, ...

11

- (i) Show that $t^2(1-t^2)^{\frac{n-3}{2}} = (1-t^2)^{\frac{n-3}{2}} (1-t^2)^{\frac{n-1}{2}}$
- (ii) Using integration by parts, show that $nI_n = (n-1)I_{n-2}$ for n = 2, 3, 4, ...
- (iii) Let $J_n = nI_nI_{n-1}$ for n = 1, 2, 3, ...

By using the principle of mathematical induction, prove that

$$J_n = \frac{\pi}{2}$$
 for $n = 1, 2, 3, ...$

- (iv) Briefly explain why $0 < I_n < I_{n-1}$ for n = 1, 2, 3, ...
- (v) Deduce that $\sqrt{\frac{\pi}{2(n+1)}} < I_n < \sqrt{\frac{\pi}{2n}}$ for n = 1, 2, 3, ...
- (b) Show that $\sum_{r=1}^{r-n} \frac{r\binom{n}{r}}{\binom{n}{r-1}} = \frac{n}{2}(n+1)$

END OF EXAMINATION

STANDARD INTEGRALS

V-108 1

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

 $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$

.EXT2 - TrialHISC 2003 $T = \int \frac{1}{\frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2} + 1} \frac{2dt}{1+t^2}$ D(i) (sin'e cosode $\frac{3x+1}{(x+1)(x+1)} = \frac{A}{x+1} + \frac{Bx+C}{x+1}$ = [15in30]"2 => A(x2+1) + (Bx+c)(x+1)=3x+ $\frac{\rho vt \ \alpha = -1}{2A} = -2 \Longrightarrow A = -1$ $= \int_{0}^{2} \frac{2 dt}{2t + 1 - t^{2} + 1 + t^{2}}$ $\frac{\text{put } q=0}{A + C = 1}$ $\therefore -1 + C = 1 \implies C = 2$ (ii) $\int_{0}^{1} \frac{x}{\sqrt{x}H} dx = I$ $= \int_0^1 \frac{2elt}{2t+2}$ let "= x+1; u>0 2udu = du. coefft $4n^2$ A + B = 0 $-1 + 3 = 0 \Rightarrow B = 1$ $= \int_0^{\infty} \frac{dt}{1+t}$ $I = \int_{1}^{\infty} \frac{u^2 - 1}{\sqrt{u^2}} \operatorname{2ndu}$ = flu/1+x// = 2 \(\left(\frac{1}{4} - 1 \right) - \frac{1}{4} \right) $I = \int \frac{1}{2\pi} ds + \int \frac{x+2c}{x^2+1} ds$ = h2 $= 2 \left[\frac{1}{3} u - u \right]$ = - lu/x+1/ + \ = do $= 2 \left[\frac{2/2 - \sqrt{2} - \left(\frac{1}{3} - 1\right)}{2 \left(-\frac{1}{3} / 2 + \frac{1}{3} \right)} \right]$ + \(\frac{2 dsc}{2^2 + \lambda } 5/3/= 2 Argz = 27 =-lupe+1/ + flupe+1/ $=\frac{2}{3}(2-12)$ (iii) (fam 'scoloc +2 tan oc t - [13] = 13] = 2 3 / Arg = - Argz = -217 = Stande of Ge) else. (c) t = ferm 20 2 \[|3| = |3| = 4\]
\[Agz = 2 Agz = 4] dt = 1 see 25 = 1 (1+t) = [> fam >] - \frac{21}{1+x^2} dse (c) AC = [AC] cis 45° AE i. dx = 2 dt 1+t2 = 1/4 - = [lu/1+se]] 1 S/3/= 13 = 2 3 Ag=-27 = 2 × 1/2 (1+1) AR = 1/4 - 2[lu2]=1/2- 1/42

(b) (-3+41) = (a+16-)= a2-62 + 2ial $= a^{2} - b^{2} + 3ial$ $= a^{2} - b^{2} + 3$ 5 = a + 62 Herre 20 : 2 -: a = 1 but ab = 2:. \(-3+4i = t (1+2i)

AC = 12 (1+i) AB AB = (6+8i) - (10+2i) 2. AC = V2(1+i)(-4+6i)oc = OA +Ac = 10+2i + 12(1+i)(-4+6i) = 10+2i + 12(-10+2i) C = -10(12-1) + 2(12+1)1 (3) 3(a) $9x^2 - 16y^2 = 144$ 3 (a) $9x^{2} - 16y^{2} = 144$ (b) (i) $x = a\cos\theta$ $y = b\sin\theta$ (i) $b^{2} - b^{2} - 1$ $dx = -a\sin\theta$ (i) $dx = -a\sin\theta$ 9 = e-1=) e = 25 $\frac{dy}{dx} = \frac{f}{a} \frac{\cos \theta}{\sin \theta}$ (ii) S(tae, 0) a=4 4-6-5100 = - 6 656 (>c-aco: $= S(\pm 5,0) \qquad \bigcirc$ aysino-absin20 = - box coso + abcos? (iv) asymptotes (m) y = 1 b x bx coso + aysin 0 = ab (sin'6+ y = + 3 oc : bx coso + oysino = ab 3 (") directrices (ii) (sk = s= (ae, o) s'= (-ae, SR = | bae coso + 0 -ab | Voces & + Azsiaro

$$EF = \frac{c}{c} - kv^{2}$$

$$= \frac{c}{c} \left(\frac{1}{b} - \frac{kv^{2}}{c}\right)$$

$$= \frac{c}{c} \left(\frac{1}{b} - \frac{kv^{2}}{c}\right)$$

$$EF = \frac{c}{c} \int \frac{v^{2}}{c} \int \frac{v^{2}}{$$

:K= - 1 h(7 v3) $(x^{2}-y^{3}) = (x^{2}-y^{3}) = (x^{2}-y^{3})$ $\frac{v^{3} \left[\ln \left(\frac{v^{2} - v^{3}}{\sqrt{2} v^{3}} \right) \right]}{2 - C}$ $\frac{V^{3}-V^{3}}{2V^{3}}=e^{-\frac{3C}{V^{3}}}z$ $V^{3}-v^{3}=\frac{7}{8}V^{3}-\frac{3c}{v^{3}}$ -. 63 = V3[1- ze 33 or 6= V (1- 7e) P(a) = (x-2) Q(a) $f(\alpha) = 3(\alpha - \alpha)Q(\alpha) + (\alpha - \alpha)Q(\alpha)$ $f'(\alpha) = 0 + 0 = 0$ $P'(\alpha) = 6(x-2)Q(\alpha) + 3(x-2)Q$ + 3(71-2) 9(2)+(1-2) 9/ P"(x) = 0 +0+0 +0

P(x) = 2x+ 922+6x-202-24 If a in the hope toat than & is a roat of P'EI = 0 P'EI = 8203 + 2722 +1236 - 20 P(x)= R4x2+54x+12 (4x+1)(x+2)=0 $\alpha = -4 , 5-2$ as 4/2 (fun 2) then -1/4 in not a root of P(x) =0 so x=2 in the hiple root. 1. PEO = (2+2) (2x-3) ·: イニーマニュス, き method 2 sulet. $y = \frac{1}{x}$ which gives roats of it, by it

i) lit

$$f(x) = 2x^{4} + 97^{2} + 6x^{2} - 202 - 24$$

If a in the high treat

them a in a reat

$$f(x) = 8x^{3} + 272^{2} + 1232 - 20$$

$$f(x) = 8x^{3} + 272^{2} + 1232 - 20$$

$$f(x) = 8x^{3} + 272^{2} + 1232 - 20$$

$$f(x) = 8x^{3} + 272^{2} + 1232 - 20$$

$$f(x) = 8x^{3} + 272^{2} + 1232 - 20$$

$$f(x) = 8x^{3} + 272^{2} + 1232 - 20$$

$$f(x) = 8x^{3} + 272^{2} + 1232 - 20$$

$$f(x) = 6x^{3} + 272^{2} + 1232 - 20$$

$$f(x) = 6x^{3} + 272^{2} + 1232 - 20$$

$$f(x) = 6x^{3} + 272^{2} + 1232 - 20$$

$$f(x) = 6x^{3} + 272^{2} + 1232 - 20$$

$$f(x) = 6x^{3} + 272^{2} + 1232 - 20$$

$$f(x) = 6x^{3} + 272^{2} + 1232 - 20$$

$$f(x) = 6x^{3} + 272^{2} + 1232 - 20$$

$$f(x) = 6x^{3} + 272^{2} + 1232 - 20$$

$$f(x) = 6x^{3} + 272^{2} + 1232 - 20$$

$$f(x) = 6x^{3} + 272^{2} + 1232 - 20$$

$$f(x) = 7x^{3} + 1232 + 1232 - 20$$

$$f(x) = 7x^{3} + 1232 + 1232 - 20$$

$$f(x) = 7x^{3} + 1232 + 1232 - 20$$

$$f(x) = 7x^{3} + 1232 + 1232 - 20$$

$$f(x) = 7x^{3} + 1232 + 1232 - 20$$

$$f(x) = 7x^{3} + 1232 - 20$$

$$f(x$$

[= (n-1) In-Solving equations !n In = (n-1) In-2 n=2,3,4,--(as In 2 define). 3 $M = -\frac{8}{9}, N = \frac{23}{9}$.. R(g) = that 1/-8x+23) In= n. In In-1 Let P(n) be the proposition that $J_n = \frac{77}{2}$ n = 1, 2, 3, ... $= (1-t^2)^{\frac{3}{2}} \left[1 - (1-t^2)\right]^{\frac{1}{1}} \int_{-\infty}^{\infty} 1 \times I \times I = 1 \times I \times I = 1$ $= t^{2}(1-t^{2})^{\frac{1}{2}}$ = LHS = LHS $= \int_{0}^{\infty} dt = 1$ $= \int_{0}^{\infty} dt$ $I_0 = \int_{1}^{\infty} \frac{dt}{\sqrt{1-t^2}}$ $(ii) I_n = \int_{a}^{a} (1-t^2)^{-1} dt$ $= \int_{0}^{t} \frac{(1-t^{2})^{\frac{1}{2}}}{dt} \frac{d(t)}{dt} \frac{dt}{1-t^{2}} = \lim_{t \to 1^{-}} \int_{0}^{\infty} \frac{dt}{\sqrt{1-t^{2}}}$ $=\left[t\left(1-t^{2}\right)^{\frac{1}{2}}\right]_{0}$ = Lim (sin sc). - 1=1 St (1-12) 1=2 (2+) dx. = 7/2 ~. 5, = 1/2 $= (n-1) \int t^2 (1-t^2)^{n-2}$ $= (n-1) \left[\int_{0}^{\pi} (1-x^{2})^{n-\frac{3}{2}} - \int_{0}^{\pi} (1-x^{2})^{n-\frac{3}{2}} \right]$

For n = 1, 2, 3, - $P(n): \quad \mathcal{T}_n = \mathcal{T}_2$ $P(n+1): \quad \mathcal{J}_{n+1} = \mathcal{J}_{2}$ $J_{n+1} = (n+)I_{n+1} I_n$ By (a) (ii) on 11+1 = 2,3,4,-(n+1) In+1 = n In-1 -: Jn+ = n In In-1 by induction hypothesis Here by Math Toduction (3 $J_n = J_2 f_n n = 1, 2, 3, ...$ (0, P(n) have for n = 1, 2, 3, ... $= 0 < J_n < J_n < J_n$ $= 0 < J_n < J_n < J_n$ $I_n = \int_0^\infty (-1)^n dt.$ This is clerly > 0 In-1 = So (1-12) 1-12 dt

Tun- In-1= (1-1) 2/4

 $= \int_{-1}^{1} (-t^2)^{\frac{1}{2}} \left[(1-t^2)^{\frac{1}{2}} - 1 \right] dt$ = ((-12) = [V-12-1] de $F_{\text{ev}} = 0 \le t \le 1$ $0 \le \sqrt{1 - x^{2}} \le 1$ -1 = T-+2-1 = 0 Henre In- In- KO => 0 < In < In < (2) o < In < In-1 XIn and In >0 => 0 < In < In-,In ラ のくずれくぼれ

 $\frac{\binom{n}{r}}{\binom{n}{n}} = \frac{n-r+1}{r}$

$$\frac{(n)}{(n)} = (n-r+1)$$

$$\frac{n}{(n-r+1)}$$

$$= n \leq n - \leq r + \leq 1$$

$$= n^2 - \frac{n}{2}(n+r) + n$$

$$= n(n+r) - \frac{n}{2}(n+r)$$

$$= \frac{1}{2}n(n+r)$$

$$= \frac{1}{2}n + \frac{1}{2}$$

$$= \frac{1}{2}n + \frac{1}{2}$$

$$= \frac{1}{2}(n+r)$$

$$= \frac{1}{2}(n+r)$$