HSC Mathematics Extension 1

Practice Paper 6

Question 1

- (a) Solve $\frac{2x+5}{x} \le 1$.
- (b) Differentiate $x^2 \tan^{-1} x$.
- (c) If $\log_a \left(\frac{b}{c}\right) = 1.25$, what is the value of $\log_a \left(\frac{c}{b}\right)$?
- (d) Find the exact value of $\int_0^3 \frac{1}{\sqrt{12-x^2}} dx.$
- (e) Using the substitution u = 3x + 1, or otherwise, evaluate

$$\int_0^2 \frac{3x-2}{3x+1} \ dx.$$

Question 2

(a) A, B, C and D are points on the circumference of a circle.

AC and BD intersect at P.

$$\angle BAC = \angle DAC = x^{\circ}.$$

- (i) State why $\angle ACB = \angle ADB$.
- (ii) Prove that $\angle ABC = \angle APD$.
- (iii) Deduce that $\angle ADC = \angle CPD$.

- (b) The roots of the equation $4x^3 + 6x^2 + c = 0$, where c is a non-zero constant, are α , β , and $\alpha\beta$.
 - (i) Show that $\alpha\beta \neq 0$.
 - (ii) Show that $\alpha\beta + \alpha^2\beta + \alpha\beta^2 = 0$ and deduce the value of $\alpha + \beta$.
 - (iii) Show that $\alpha\beta = -\frac{1}{2}$.
 - (iv) Solve the equation.

- (a) (i) On the same set of axes, sketch graphs of $y = \theta$ and $y = -\tan \theta$ for $-\pi \le \theta \le \pi$.
 - (ii) Use your graphs to state the number of solutions to the equation $\theta + \tan \theta = 0$ for $-\pi \le \theta \le \pi$.

(b)

The point T lies on the circumference of a semicircle, radius r and diameter AB, as shown. The point P lies on AB produced and PT is the tangent at T.

The arc AT subtends an angle of θ at the centre, O, and the area of $\triangle OPT$ is equal to that of the sector AOT.

- (i) Show that $\theta + \tan \theta = 0$.
- (ii) Taking 2 as an approximation to θ , use Newton's method once to find a better approximation to two decimal places.
- (c) In a game of Tringles, three players, A, B and C, each have a regular six-sided dice. A throws first. B is then allowed up to two attempts to match A's number. If he does so, he wins. If B fails, C is allowed up to two attempts to match either A's number or B's second number. If C fails, A wins.

Which player has:

- (i) the greatest chance of winning?
- (ii) the least chance of winning?

Question 4

(a) The triangle ABC is isosceles, with AB = BC = a, and BD is perpendicular to AC.

Let $\angle ABD = \angle CBD = \alpha$.

- (i) Show that the area of $\triangle ABD$ is $\frac{a^2 \sin \alpha \cos \alpha}{2}$.
- (ii) By considering the area of $\triangle ABC$, prove that $\sin 2\alpha = 2\sin \alpha \cos \alpha$.

(iii) IA and IB bisect ∠s CAB and CBA as shown.

Prove that $\frac{IB}{IA} = \frac{a\cos\beta}{b\cos\alpha}$.

(b) P is a point oscillating in simple harmonic motion on an x axis, the centre of the motion being the origin, O. The amplitude of the motion is A m, the period 2π seconds, and, when t = 0, the point is at O, moving in the positive direction.

- (i) Express x as a sine function of t.
- (ii) OQ is perpendicular to the axis, OQ = A m and $\angle OQP = \theta$. Show that $x = A \tan \theta$ and deduce that

$$\frac{dx}{d\theta} = A(1 + \sin^2 t).$$

- (iii) Find $\frac{d\theta}{dt}$ as a function of t.
- (iv) Find the times at which θ is increasing at a rate of $\frac{2}{7}$ radians per second.

Question 5

- (a) A particle moves on an x axis so that, when x m from an origin, its acceleration is $-2x^3$ m s⁻². The particle is initially at rest at x = 4.
 - (i) In which direction will the particle first move, and why?
 - (ii) Show that its velocity, $v \text{ m s}^{-1}$, is given by $v^2 = 256 x^4$.
 - (iii) Where will the particle next come to rest and what will be the subsequent motion?

(iv) The particle takes
$$T$$
 seconds to travel from $x = -3$ to $x = 3$.
Show that $T = \int_{-3}^{3} \frac{1}{\sqrt{256 - x^4}} dx$.

- (v) Use Simpson's rule with three function values to find a two-place decimal approximation to T.
- (b) (i) Write, in sigma notation, the expansion of $(1+a)^n$.

(ii) Prove that
$$\sum_{r=1}^{n} {n \choose r} a^r = \sum_{r=1}^{n} a(1+a)^{r-1}$$
.

- (a) (i) Find the stationary points on the graph of $y = \frac{12x x^3}{8}$.
 - (ii) A function is defined by $f(x) = \frac{12x x^3}{8}$, for $-2 \le x \le 2$. Sketch a graph of y = f(x) and explain why an inverse function, $f^{-1}(x)$, exists.
 - (iii) Sketch $y = f^{-1}(x)$ on the same set of axes.
 - (iv) If θ is the acute angle formed by the tangents to the two curves at the origin, find the value of $\tan \theta$.
 - (v) Find the value of $\int_0^2 f^{-1}(x) dx$.
- (b) Jo borrows \$50 000 at 9% per year reducible interest, calculated monthly. The loan is to be repaid in 240 equal monthly payments.
 - (i) Show that the amount of each payment will be \$449.86.
 - (ii) After Jo has made twelve such payments, the interest rate rises to 12% per year. Show that, if Jo is ever going to repay the loan, she must increase the amount of her payments.
 - (iii) If the new interest rate is maintained, and Jo does not increase her payments, what will be the amount owing after a further twenty-four payments?

Sketch, on the same number plane, graphs of $y = \sin \theta$ and $y = \sin 2\theta$, for (a) $0 \le \theta \le \frac{\pi}{2}$.

(b)

A particle is projected from a point O on horizontal ground with speed $V \text{ m s}^{-1}$ at an angle of elevation of θ , landing at L, as shown. You may assume that the displacements of this particle after t seconds are given by

$$x = Vt\cos\theta$$
 and $y = Vt\sin\theta - \frac{g}{2}t^2$.

- (i) Show that the range, R m, and the greatest height reached, H m, are given by $R = \frac{V^2 \sin 2\theta}{g}$ and $H = \frac{V^2 \sin^2 \theta}{2g}$.
- A second particle is projected at the same time as the first, with speed (ii) $V \text{ m s}^{-1}$, horizontally from the point P, H m above O.

Prove that its displacements are given by

$$x = Vt$$
 and $y = H - \frac{1}{2}gt^2$.

- (iii) Prove that, when the second particle lands, the first is at the top of its flight.
- (iv) Let the range of the second particle be S m and find the value of θ for which R = S.
- Describe the manner in which |R-S| varies as θ increases from 0 to $\frac{\pi}{2}$. (v) [You may use part (a).]

Practice Paper 6

Question 1

(a)
$$x(2x+5) \le x^2$$

 $x^2 + 5x \le 0$
 $x(x+5) \le 0$
 $x = -5 \le x < 0$, since $x \ne 0$.

(b)
$$f'(x) = x^2 \left(\frac{1}{1+x^2}\right) + 2x \tan^{-1} x$$

= $\frac{x^2}{1+x^2} + 2x \tan^{-1} x$

(c)
$$\log\left(\frac{c}{b}\right) = \log\left(\frac{b}{c}\right)^{-1}$$

= $-\log\left(\frac{b}{c}\right)$
= $-1 \cdot 25$

(d)
$$\int_0^3 \frac{1}{\sqrt{12 - x^2}} dx = \left[\sin^{-1} \frac{x}{2\sqrt{3}} \right]_0^3$$
$$= \sin^{-1} \frac{3}{2\sqrt{3}} - \sin^{-1} 0$$
$$= \sin^{-1} \frac{\sqrt{3}}{2}$$
$$= \frac{\pi}{3}$$

(e)
$$u = 3x + 1$$
, $x = 0$, $u = 1$
 $\frac{du}{dx} = 3$, $x = 2$, $u = 7$

$$\int_{0}^{2} \frac{3x - 2}{3x + 1} dx = \frac{1}{3} \int_{1}^{7} \frac{u - 3}{u} du$$

$$= \frac{1}{3} \int_{1}^{7} \left(1 - \frac{3}{u}\right) du$$

$$= \frac{1}{3} \left[u - 3 \ln u\right]_{1}^{7}$$

$$= \frac{1}{3} (7 - 3 \ln 7 - 1)$$

$$= 2 - \ln 7$$

Question 2

(a) (i) Angles in the same segment of a circle are equal.

(ii) Let
$$\angle ACB = \angle ADB = y^{\circ}$$

Then $\angle ABC = 180^{\circ} - (x+y)^{\circ}$
($\angle sum \text{ of } \triangle ABC$)

and
$$\angle APD = 180^{\circ} - (x + y)^{\circ}$$

 $(\angle \text{sum of } \triangle APD)$
 $\therefore \angle ABC = \angle APD.$

(iii)
$$\angle ADC = 180^{\circ} - \angle ABC$$

(opp. $\angle s$ of cyclic quad.)
 $\angle CPD = 180^{\circ} - \angle APD$
(straight line)

(b) (i) $\alpha\beta$ is a root of the equation, but zero is not.

(ii)
$$\alpha\beta + \alpha(\alpha\beta) + \beta(\alpha\beta) = 0$$

 $\alpha\beta + \alpha^2\beta + \alpha\beta^2 = 0$
 $\alpha\beta(1 + \alpha + \beta) = 0$
But $\alpha\beta \neq 0$.

 $\therefore \angle ADC = \angle CPD.$

But
$$\alpha\beta \neq 0$$
, $1 + \alpha + \beta = 0$
 $\alpha + \beta = -1$

(iii)
$$\alpha + \beta + \alpha \beta = -\frac{6}{4}$$

 $\alpha \beta = -\frac{1}{2}$

(iv)
$$\alpha$$
 and β are the roots of $x^2 - (-1)x - \frac{1}{2} = 0$
that is, $2x^2 + 2x - 1 = 0$
$$x = \frac{-2 \pm \sqrt{4 + 8}}{4}$$
$$= \frac{-1 \pm \sqrt{3}}{2}$$
Hence the roots are $-\frac{1}{2}$ and $\frac{-1 \pm \sqrt{3}}{2}$.

Question 3

(a) (i)

(ii) Three

(b) (i)
$$OT = r$$
, $\angle OTP = 90^{\circ}$

$$\tan(\pi - \theta) = \frac{PT}{r}$$

$$-\tan \theta = \frac{PT}{r}$$

$$PT = -r \tan \theta$$

$$Area \triangle OPT = -\frac{r^2 \tan \theta}{2}$$

$$\therefore -\frac{r^2 \tan \theta}{2} = \frac{r^2 \theta}{2}$$

$$\theta + \tan \theta = 0$$

(ii)
$$f'(\theta) = 1 + \sec^2 \theta$$

Approximation = $2 - \frac{2 + \tan 2}{1 + \sec^2 2}$
= 2.03

(c)
$$P(B) = \frac{1}{6} + \frac{5}{6} \times \frac{1}{6} = \frac{11}{36}$$

For C to win, B must fail, and then C succeed.
 $P(C) = \frac{25}{36} \left(\frac{2}{6} + \frac{4}{6} \times \frac{2}{6} \right) = \frac{125}{324}$
 $P(B) = \frac{99}{324}$
 $P(A) = 1 - \left(\frac{125}{324} + \frac{99}{324} \right) = \frac{100}{324}$

- (i) C has the greatest chance
- (ii) B has the least chance

Question 4

(a) (i)
$$AD = a \sin \alpha$$

 $BD = a \cos \alpha$
Area $\triangle ABD = \frac{a^2 \sin \alpha \cos \alpha}{2}$

(ii) Area
$$\triangle ABC = \frac{a^2 \sin 2\alpha}{2}$$

Area $\triangle ABC = 2 \times \text{area } \triangle ABD$

$$\frac{a^2 \sin 2\alpha}{2} = a^2 \sin \alpha \cos \alpha$$

$$\sin 2\alpha = 2 \sin \alpha \cos \alpha$$

(iii)
$$\frac{IB}{IA} = \frac{\sin \alpha}{\sin \beta} \quad \text{(sine rule, } \Delta IAB\text{)}$$
Also,
$$\frac{a}{b} = \frac{\sin 2\alpha}{\sin 2\beta} \quad \text{(sine rule, } \Delta ABC\text{)}$$

$$= \frac{2\sin \alpha \cos \alpha}{2\sin \beta \cos \beta}$$

$$= \frac{\sin \alpha}{\sin \beta} \cdot \frac{\cos \alpha}{\cos \beta}$$
that is,
$$\frac{a}{b} = \frac{IB}{IA} \cdot \frac{\cos \alpha}{\cos \beta}$$

$$\frac{IB}{IA} = \frac{a\cos \beta}{b\cos \alpha}$$

(b) (i)
$$x = A \sin t$$

(ii)
$$\frac{x}{A} = \tan \theta$$
$$x = A \tan \theta$$
$$\frac{dx}{d\theta} = A \sec^2 \theta$$
$$= A \left(1 + \tan^2 \theta\right)$$
$$= A \left(1 + \frac{x^2}{A^2}\right)$$
$$= A \left(1 + \sin^2 t\right)$$

(iii)
$$\frac{d\theta}{dt} = \frac{d\theta}{dx} \cdot \frac{dx}{dt}$$
$$= \frac{A\cos t}{A(1+\sin^2 t)}$$
$$= \frac{\cos t}{1+\sin^2 t}$$

(iv)
$$\frac{\cos t}{1 + \sin^2 t} = \frac{2}{7}$$

$$7 \cos t = 2 + 2(1 - \cos^2 t)$$

$$2 \cos^2 t + 7 \cos t - 4 = 0$$

$$(2 \cos t - 1)(\cos t + 4) = 0$$

$$\cos t = \frac{1}{2} \qquad (\cos t \neq -4)$$

$$t = 2n\pi \pm \frac{\pi}{3}$$

 (a) (i) Negative, since it is initially at rest where acceleration is negative.

(ii)
$$\frac{d}{dx} \left(\frac{1}{2} v^2 \right) = -2x^3$$
$$\frac{1}{2} v^2 = -\frac{1}{2} x^4 + c$$
At $x = 4$, $v = 0$, $0 = -128 + c$
$$v^2 = 256 - x^4$$

(iii) For v = 0, $x^4 = 256$ $\therefore x = 4$ or x = -4Hence next at rest at x = -4. At x = -4, acceleration is positive, and the particle will move in the positive direction.

(iv) In moving from x = -3 to x = 3, y > 0. Hence $\frac{dx}{dt} = \sqrt{256 - x^4}$ $\frac{dt}{dx} = \frac{1}{\sqrt{256 - x^4}}$ $T = \int_{-3}^{3} \frac{1}{\sqrt{256 - x^4}} dx$

(v)
$$T = \frac{3}{3} \left(\frac{1}{\sqrt{175}} + 4 \times \frac{1}{16} + \frac{1}{\sqrt{175}} \right) = 0.40$$

(b) (i)
$$(1+a)^n = \sum_{r=0}^n \binom{n}{r} a^r$$

(ii)
$$\sum_{r=1}^{n} {n \choose r} a^r = \sum_{r=0}^{n} {n \choose r} a^r - {n \choose 0} a^0$$

$$\vdots = (1+a)^n - 1$$

$$\sum_{r=1}^{n} a (1+a)^{r-1} = a + a (1+a) + \dots + a (1+a)^{n-1}$$

$$= \frac{a [(1+a)^n - 1]}{(1+a) - 1}$$

$$= (1+a)^n - 1$$

Question 6

(a) (i)
$$\frac{dy}{dx} = \frac{3(4-x^2)}{8}$$

Stationary at (2, 2) and (-2, -2).

(iv) Gradient of
$$f(x)$$
 at $(0, 0) = \frac{3}{2}$
Gradient of $f^{-1}(x)$ at $(0, 0) = \frac{2}{3}$

$$\tan \theta = \frac{\frac{3}{2} - \frac{2}{3}}{1 + (\frac{3}{2})(\frac{2}{3})} = \frac{5}{12}$$

(v)
$$\int_0^2 \frac{12x - x^3}{8} dx = \frac{1}{8} \left[6x^2 - \frac{x^4}{4} \right]_0^2$$
$$= \frac{1}{8} (24 - 4)$$
$$= 2 \cdot 5$$
Area of $\triangle OAB = 2$ Hence
$$\int_0^2 f^{-1}(x) dx = 1 \cdot 5$$

(b) (i)
$$50\ 000(1\cdot0075)^{240} - \frac{P(1\cdot0075^{240} - 1)}{1\cdot0075 - 1} = 0$$

$$\therefore P = \frac{50\ 000(1\cdot0075)^{240}(0\cdot0075)}{1\cdot0075^{240} - 1}$$

(ii) The amount owing after 12 payments = $50\ 000(1\cdot0075)^{12} - \frac{449\cdot86(1\cdot0075^{12}-1)}{1\cdot0075-1}$ = \$49 063 \cdot 88. The next interest charge will be over \$490.

The next interest charge will be over \$490, which exceeds her payment.

(iii) The amount owing
=
$$49.063 \cdot 68(1.01)^{24} - \frac{449 \cdot 86(1.01^{24} - 1)}{1.01 - 1}$$

= \$50.163.57.

(a)

(b) (i) When
$$y = 0$$
, $t = \frac{2V \sin \theta}{g}$

$$R = V \cos \theta \left(\frac{2V \sin \theta}{g}\right)$$
That is, $R = \frac{V^2 \sin 2\theta}{g}$

$$\frac{dy}{dt} = V \sin \theta - gt$$

When
$$\frac{dy}{dt} = 0$$
,
 $t = \frac{V \sin \theta}{g}$
 $H = \frac{V^2 \sin^2 \theta}{g} - \frac{g}{2} \cdot \frac{V^2 \sin^2 \theta}{g^2}$
That is, $H = \frac{V^2 \sin^2 \theta}{2g}$.

- (ii) For this particle, put $\theta = 0$ and y = Hwhen t = 0. Hence x = Vt, $y = H - \frac{1}{2}gt^2$.
- (iii) When $H \frac{1}{2}gt^2 = 0$, $t^2 = \frac{2H}{g} = \frac{V^2 \sin^2 \theta}{g^2}$ $t = \frac{V \sin \theta}{g}$,

which is the time taken by the first particle to reach the top of its flight, from part (i).

(iv) When
$$t = \frac{V \sin \theta}{g}$$
, $x = \frac{V^2 \sin \theta}{g}$
That is, $S = \frac{V^2 \sin \theta}{g}$.
If $R = S$, $\frac{V^2 \sin 2\theta}{g} = \frac{V^2 \sin \theta}{g}$
 $2 \sin \theta \cos \theta = \sin \theta$
 $2 \cos \theta = 1$ $(\sin \theta \neq 0)$
 $\cos \theta = \frac{1}{2}$
 $\theta = \frac{\pi}{3}$

The difference between R and S is illustrated by the distance between the graphs in part (a), measured parallel to the y axis. This begins at zero, increases to a local maximum (see below), decreases to zero at $\frac{\pi}{3}$ and then increases to $\frac{V^2}{g}$ when $\theta = \frac{\pi}{2}$. For $(\sin 2\theta - \sin \theta)$ to be maximum, $2\cos 2\theta - \cos \theta = 0$ $4\cos^2\theta - \cos\theta - 2 = 0$

$$\therefore \cos \theta = \frac{1 + \sqrt{33}}{8} \quad \left(\frac{1 - \sqrt{33}}{8} < 0\right)$$
and $\theta \doteqdot 0.57$.