

Year 12 Mathematics Trial HSC Examination 2014

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this question paper
- In Questions 11 16, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section.

Section II

90 marks

- Attempt Questions 11-16
- Start each question in a new writing booklet
- Write your name on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your name and "N/A" on the front cover
- Allow about 2 hours 45 minutes for this section

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = \frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \, \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$
NOTE:
$$\ln x = \log_b x, \quad x > 0$$

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

- 1 What is the primitive of $\frac{2}{x} \cos x$?
 - (A) $-\frac{2}{x^2} + \sin x + C$
 - (B) $-\frac{2}{x^2} \sin x + C$
 - (C) $2 \ln x + \sin x + C$
 - (D) $2 \ln x \sin x + C$
- 2 : What are the values of x for which |4-3x| < 13?
 - (A) $x < -3 \text{ and } x < \frac{17}{3}$
 - (B) x > -3 and $x > \frac{17}{3}$
 - (C) x > -3 and $x < \frac{17}{3}$
 - (D) x < -3 and $x > \frac{17}{3}$
- What is the simultaneous solution to the equations 2x + y = 7 and x 2y = 1?
 - (A) x=3 and y=1
 - (B) x = -1 and y = 9
 - (C) x = 2 and y = 3
 - (D) x = 5 and y = 1

- 4 Factorise $2x^2 7x 15$
 - (A) (2x-3)(x-5)
 - (B) (2x+3)(x-5)
 - (C) (2x-5)(x-3)
 - (D) (2x+5)(x-3)
- 5 The value of $\frac{5.79 + 0.55}{\sqrt{4.32 3.28}}$ is closest to:
 - (A) 4
 - (B) 6
 - (C) 9
 - (D) 10
- 6 What are the values of p and q given $(3\sqrt{12} + \sqrt{75})(2 + \sqrt{48}) = p + q\sqrt{3}$?
 - (A) p = 132 and q = 15
 - (B) p = 396 and q = 15
 - (C) p = 132 and q = 22
 - (D) p = 396 and q = 22
- 7 The line 6x ky = 8 passes through the point (3,2). What is the value of k?
 - (A) -13
 - (B) -5
 - (C) 5
 - (D) 15

- The semi-circle $y = \sqrt{4-x^2}$ is rotated about the x-axis. Which of the following expressions is correct for the volume of the solid of revolution?
 - (A) $V = \pi \int_{0}^{2} (4 x^{2}) dx$
 - (B) $V = 2\pi \int_{0}^{2} (4-x^{2}) dx$
 - (C) $V = \pi \int_{0}^{2} (4 y^{2}) dy$
 - (D) $V = 2\pi \int_{0}^{2} (4 y^{2}) dy$
- A circle has the equation $4x^2 4x + 4y^2 + 24y + 21 = 0$. What is the radius and centre?
 - (A) Centre $\left(\frac{1}{2}, -3\right)$ and radius of 2.
 - (B) Centre $\left(\frac{1}{2},3\right)$ and radius of 2.
 - (C) Centre $\left(\frac{1}{2}, -3\right)$ and radius of 4.
 - (D) Centre $\left(\frac{1}{2},3\right)$ and radius of 4.
- An infinite geometric series has a first term of 12 and a limiting sum of 15. What is the common ratio?
 - (A) $\frac{1}{5}$
 - (B) $\frac{1}{4}$
 - (C) $\frac{1}{3}$
 - (D) $\frac{1}{2}$

Section II

90 marks
Attempt Questions 11–16
Allow about 2 hours 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

Marks

(a) The diagram shows the points A(-1,1), B(3,6), C(5,1) and D(-3,-9).

- (i) Find the coordinates of E, the midpoint of DC.
- (ii) Show that the equation of BE is 5x-y-9=0.
- (iii) Find the perpendicular distance from A to the line BE.
- (iv) Show that *ABED* is a parallelogram.
- (v) Find the area of $AB\widehat{E}D$.

		End of Question 11	
	(iii)	Find the equation of the normal at the point $P(2,5)$.	2
	(ii)	State the focal length of the parabola.	1
	(i)	Find the coordinates of its vertex.	2
(c) The equation of a parabola is given by $y = x^2 - 2x + 5$.		equation of a parabola is given by $y = x^2 - 2x + 5$.	
(b)	Find the equation of the tangent to the curve $y = \log_e x - 1$ at the point $(e, 0)$.		

Question 12 (15 marks) Use a SEPARATE writing booklet	Marks
Question 12 (15 marks) 655 2 2	•
(a) There are 200 tickets sold in a raffle with only two prizes. These tickets are placed in a bag and two are drawn, one at a time. Once a ticket is drawn it is not placed back in the bag. One boy bought 3 tickets. calculate the probability the boy wins:	
	1
	1,
(ii) Both prizes.	1
(iii) The second prize only.	1
A(IV) RENO: Prize latially	
(b) Differentiate with respect to x .	2
(i) $e^{3x} \tan x$	2
(ii) $\frac{\sin x}{5-x}$	Z
(c) Evaluate	
(i) $\int \frac{1}{1-2x} dx$	2
	. 2
(ii) $\int_{0}^{\pi} \sec^2 \frac{x}{3} dx$, L
A was grand & Find the value	of:
(d) The roots of the equation $2x^2 - x - 15 = 0$ are α and β . Find the value	1
(i) $\alpha + \beta$	1
	ļ
(ii) αβ	
(iii) $\frac{1}{\alpha} + \frac{1}{\beta}$	

Question 13 (15 marks) Use a SEPARATE writing booklet

Marks

(a) Melanie is using wire to construct a geometrical design which consists of *n* regular hexagons with sides 2cm, 5cm, 8cm and so on going up by the same amount each hexagon. The diagram below shows the first 3 hexagons of her design.

- (i) Find the perimeter of the nth hexagon.
- ii) Show that the total length of the wire is $L = 9n^2 + 3n$.
- (iii) If the total length of the wire is 6 metres, find the number of hexagons that Melanie has constructed.
- (b) Let $f(x) = x^3 3x^2 9x + 22$
 - (i) Show that f''(x) = 6x 6
 - (ii) Find the coordinates of the stationary points on y = f(x) and determine their nature.
 - (iii) Find the coordinates of the point(s) of inflexion.
 - (iv) Sketch the graph of y = f(x), indicating where the curve meets the y-axis, stationary points and the point(s) of inflexion.
 - v) For what values of x is the graph of y = f(x) concave down?

(c) Alex and Bella leave from point O at the same time. Alex travels at 20km/h along a straight road in the direction 085°. Bella travels at 25km/h along another straight road in the direction 340°.

Find the distance Alex and Bella are apart to the nearest kilometre after two hours.

2

2

a)

ABCD is a rhombus, BE is perpendicular to AD and intersects AC at F. Copy or trace the diagram into your writing booklet.

- (i) Explain why ∠BCA = ∠DCA.
 (ii) Prove that the triangles BFC and DFC are congruent.
 (iii) Show that ∠FBC is a right angle.
 (iv) Hence, or otherwise, find the size of ∠FDC.
- (b) A scientist grows the number of bacteria according to the equation $N(t) = Ae^{0.15t}$

Where t is measured in days and A is a constant.

- (i) Show that the number of bacteria increases at a rate proportional to the number present.
- When t=3 the number of bacteria was estimated at 1.5×10^8 . Evaluate A. Answer correct to 2 significant figures.

Question 14 continues over the page

(c) During a survey the area of an irregular headland was to be found. Measurements of the area were noted on the diagram below.

Use Simpson's rule with 5 function values to estimate the area of the headland. Answer correct to the nearest square metre.

d) Solve the equation $(\cos x + 2)(2\cos x + 1) = 0$ in the domain $0 \le x \le 2\pi$.

Question 15 (15 marks) Use a SEPARATE writing booklet

Marks

(a)

The diagram shows the graphs of $y = e^x - 2$ and $y = e^{-x}$.

(i) Find the area between the curves from x=1 to x=2. Leave your answer in terms of e.

- (ii) Show that the curves intersect when $e^{2x} 2e^x 1 = 0$.
- (iii) Hence, using the substitution $u = e^x$, or otherwise, find the point of intersection of the curves.

2

3

(b) Velocity of an object moving along the x-axis is given by $y = 2 \sin t + 1$ for $0 \le t \le 2\pi$

Where v is measured in metres per second and t in seconds.

- (i) When is the object at rest?
- (ii) Sketch the graph of v as a function of t for $0 \le t \le 2\pi$
- (iii) Find the maximum velocity of the object for this period.
- (iv) When is the object travelling in the negative direction during this period?

2

2

(v) Calculate the total distance travelled by the object in the period $0 \le t \le \pi$

Question 16 (15 marks) Use a SEPARATE writing booklet

Marks

3

2

- (a) George is saving for a holiday. He opens a savings account with an interest rate of 0.4% per month compounded monthly at the end of each month. George decides to deposit \$450 into the account on the first day of each month. He makes his first deposit on the 1* of January 2012 and his last on the 1* of December 2014. George withdraws the entire amount, plus interest, immediately after his final interest payment on the 31* December 2014.
 - (i) How much in total did George deposit into his savings account over this period?
 - (ii) How much did George withdraw from his account on the 31st December 2014? Answer correct to the nearest dollar.
 - (iii) George's holiday is postponed due to family illness. He decides to deposit \$12 000 into a different account with an interest rate of 5% p.a. compounded quarterly for 2 years. How much will George receive at the end of the investment period from this \$12000 investment? Answer correct to the nearest dollar.

Question 16 continues over the page

ABCD is a rectangle with CD=3 cm and AD=2 cm. \widehat{F} and E lie on the lines BC and BA, so that, F, D and E are collinear. Let CF=x cm and AE=y cm.

- (i) Show that ΔFCD and ΔDAE are similar.
- (ii) Show that xy = 6
- (iii) Show that the area (A) of $\triangle FBE$ is given by $A = 6 + \frac{3}{2}x + \frac{6}{x}$.
- (iv) Find the height and base of ΔFBE with minimum area. Justify your answer.

End of Examination

2014 Year 12 Trial HSC Examination

Student Name: . So

Mathematics

Section I Multiple-Choice Answer Sheet

- 1 A O B O C O D 🚳
- 2 A O B O C D O
- 3 A 🚳 B O O D O
- A B B C D D
- 5 AOBGCODO
- A O B O C O D O
- 7 A O B O C 🚳 D O
- 8 A B B C D D
- 9 A 🚳 B O C O D O
- 10 A 6 B C D O

Year 12 20 Trial HSC 2014

2) |4-3x|<13

4-3x < 13 4-3x > -13 -9 < 3x 17 > 3x5c > -3 x < 17

C

- 3) 2x+y=7 0 x-2y=1 0
 - (1) 4x+2y=14x-2y=1

SX = 15 X = 3 Y = 1 Y = 1

- 4) $2x^2-7x-15 = (2)c+3)(x-5)$ [B]
- 5) [B]. 6) (3/12+75)(2+/48) = (6/3+5/3)(2+4/3)

 $= 1\sqrt{3}(2+4\sqrt{3})$

 $=22\sqrt{3}+132$

Q = 132 Q = 22, [C]

$$8 = 10$$
 $6(3) - 5k = 8$

$$\frac{1}{2}$$
) $\sqrt{2\pi} \int_{0}^{2} 4-x^{2} dx$. B

1)
$$4x^2-4x+4y^2+24y=-21$$

 $x^2-x+y^2+6y=-21$
 $x^2-x+\frac{1}{4}+y^2+6y+9=-21+\frac{1}{4}+9$
 $(x-\frac{1}{2})^2+(y+3)^2=4$

$$(\frac{1}{2}, -3)$$
 $R=2$ A

0)
$$a=12$$
.
 $S_{n}=15$
 $15=12$
 $1-7$.

i)
$$E\left(\frac{5-3}{2},\frac{1-9}{2}\right)$$

$$m_{BE} = \frac{6+4}{3-1}$$

$$y + 4 = 5(x - 1)$$

$$10)$$
 $M_{AE}(-1+1, 1-4)$

$$M_{BO}\left(\frac{3-3}{2},\frac{6-9}{2}\right)$$

$$\mathcal{H}^{BO}\left(0,-\frac{3}{3}\right)$$

and the second s

the first of the second of the

The second of th

and the second s The state of the s

$$A(-1,1)$$

$$d = \frac{|5(-1) - (1) - 9|}{\sqrt{5^2 + p^2}}$$

$$=\frac{15}{26}$$

$$BE = \sqrt{(3-1)^2 + (6+4)^2}$$

$$= \sqrt{10^4}$$

$$=2\sqrt{26}$$

$$A = 2\sqrt{26} \times 15$$

$$\sqrt{26}$$

$$=30 u^{2}$$

$$y' = \frac{1}{x}$$

$$\gamma = \frac{1}{e}$$

$$y - 0 = \frac{1}{e}(x - e)$$

the second section of the contract of the cont

The second secon

ting the control of t

$$y-5+1=x^2-2x+1$$

$$y - 4 = (x - 1)^2$$

ii)
$$\alpha = \frac{1}{4}$$

$$\gamma'=2x-2$$

$$Qx = 2$$
,

$$y^{1} = 2$$

$$m_N = -\frac{1}{2}$$

$$y^{-5} = -\frac{1}{2}(x-2)$$

$$2y-10=-x+2$$

$$x + 2y - 12 = 0$$

$$\text{or } y = 6 - \frac{\pi}{2}.$$

$$P(1st) = \frac{3}{200}$$

$$7 + (1st + 2nd) = \frac{3}{200} \times \frac{3}{199}$$

$$=$$
 $\frac{3}{19900}$

$$P(2rd) = \frac{197}{200} \times \frac{3}{199}$$

1)
$$P(none) = \frac{197}{200} \times \frac{197}{199}$$

$$\int_{0}^{\infty} dx \left(e^{3x} + \tan x\right) = 3e^{3x} + \tan x + e^{3x} \cdot \sec^{2}x \cdot \sqrt{1 + \exp^{2}x}$$

$$\frac{1}{dx}\left(\frac{\sin x}{5-x}\right) = \cos x(5-x) - \sin x \cdot (-1)$$

$$(5-x)^{2}$$

$$= \frac{5\cos x - 3\cos x + \sin x}{(5-x)^2}$$

$$(1)$$
 $\int \frac{1}{1-2x} dx = -\frac{1}{2} \ln(1-2x) + C\sqrt{1}$

=3[3]

Carrier of the Control of the Contro

ii)
$$\int_0^{\pi} \sec^2 \frac{x}{3} dx = \left[3 \tan \frac{x}{3}\right]_0^{\pi} \sqrt{3}$$

$$= 3 \tan \frac{x}{3}$$

$$di$$
) $\alpha + \beta = \frac{1}{2}$

ii)
$$\alpha\beta = -15$$

$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\cancel{x} + \cancel{\beta}}{\cancel{x} \cancel{\beta}}$$

$$= \frac{\cancel{x}}{\cancel{x} \cancel{\beta}}$$

$$=-\frac{1}{15}$$

- (i) $P = 6(2+(n-1)\times3)$
 - =6(2+3n-3)
- =18n-6
- $S_{n} = \frac{n}{2} (18n 6 + 2x6)$ $= \frac{n}{2} (18n + 6)$
 - $=9n^2+3n$
- $9^{\circ}600 = 90^{\circ} + 30$
- $\frac{3n^2 + n 200 = 0}{(3n + 25)(n 8) = 0}$
 - 25 7
 - $n = -\frac{2}{3}, g$
 - n = 8
- 5i) $f'(x) = 3x^2 6x 9$
 - f''(3c) = 6x 6
-) Stat pts of (2) = 0 $0 = 3(2^2 - 2x - 3)$
 - (x-3)(x+1)=0
 - x = 3, -1

- @x=-1, y=27.
 - y'' = -6-6
- :. (-1, 27) is a max tp. V
- (0) =3, y=(-5)
 - y" = 18-6
- -(3,-5) is a min +p (3,-12) \vee
- 11) POI @ y = 0
 - 0 = 6x 6
- Check [x 0 112]
- -. (1,11) is a POI

) $\times < 1$ \checkmark

$$AB^2 = 40^2 + 50^2 - 2 \times 40 \times 50 \times \cos 105^\circ$$

Question 14

$$O(1)$$
 $N(t) = Ae^{0.15t}$

$$A = \frac{1.5 \times 10^8}{e^{0.45}}$$

$$=9.6\times10^7$$
 backera \checkmark

\tilde{i}	N=2	1	· ·	
/	$2 = e^{0.15}$			 -
	In2 = 0.15t.			
	$t = \frac{\ln 2}{0.15}$			
	= 4.62.			
	-4.6 d	ays		

$$A = \frac{10}{3}(52.8 + 19.6 + 62.8)$$

= 4507

$$= 450. + 1$$

1)
$$(\cos x + 2)(2\cos x + 1) = 0$$

 $\cos x = -2$ $\cos x + 2$ $\cos x + 2$

Que	estion 15	
ai)	$A = \int_{1}^{2} e^{x} - 2 - e^{-x} dx$	×.
	$= \left[e^{x} - 2x + e^{-x} \right]$	2
		$(e-2+e^{-1})$
	$= e^2 - e - 2 - e^{-1}$	te-2. V
	and the second of the second o	a a second contract of the second contract of

$$\begin{array}{ll}
\gamma = e^{x} - 2 \\
\gamma = e^{x}
\end{aligned}$$

$$e^{x} - 2 = e^{-x}$$

$$e^{x} - 2 = \frac{1}{e^{x}}$$

$$e^{2\alpha} - 2e^{\alpha} = 1$$

$$e^{2\alpha} - 2e^{\alpha} - 1 = 0$$

$$u^{2} * -2u - 1 = 0$$

$$u = 2 + \sqrt{4 + 4}$$

$$e^{x} = 1+\sqrt{2}$$
. $\sqrt{2}$

. N=0414

and the second of the second o

The second secon

$$51) @ v = 0, +=?$$

$$V=3$$

$$d = \int_0^T 2\sin t + 1 dt$$

$$= \int_0^T - 2\cos t \int_0^T$$

$$=(\pi-2\cos\pi)-(0-2\cos0)$$

$$= T + 2 + 2$$

 $= T + 4$

Question 16

$$ai) = 0.004$$

$$i_i$$
) $A_i = 450 \times 1.004^{36}$

$$Total = 450 (1.004 + 1.004^{2} + ... + 1.004^{36})$$

$$= 450 \times 1.004 (1.004^{6} - 1)$$

$$= 0.004$$

$$(iii) = 0.05 \div 4$$

= 0.0125

$$\angle AED = 180 - 90 - (90 - x)$$

= x (\(\xi \) sum of \(\I\)

$$CE = \frac{CD}{AD}$$

$$\frac{\times}{2} = \frac{3}{2}\frac{3}{4}$$

$$x = 6$$
 $y = 6$ x

$$A = \frac{1}{2} \left(BF \right) \times \left(BE \right)$$

$$=\frac{1}{2}(x+2)(y+3)$$

$$=\frac{1}{2}(xy+3x+2y+6)$$

$$=\frac{1}{2}\left(x.\frac{6}{x}+3x+2.\frac{6}{x}+6\right)$$

$$= \frac{1}{2} \left(6 + 3x + \frac{12}{x} + 6 \right)$$

$$= \frac{1}{2} \left(12 + 3x + \frac{12}{x} \right)$$

iv),
$$\frac{dA}{dx} = \frac{3}{2} = \frac{6}{x^2}$$
.

$$\frac{6}{2} = \frac{3}{2}$$

$$12 = 3x^{2}$$

$$2c=2$$
 $\sqrt{2c}$

$$\frac{d^2A}{dx^2} = \frac{12}{2^3}$$