Nelson Maths 9 for the CSF II Homework and Assessment Sheets

Exponentials

AL 9-1

Name: _____ Class: _____

Due date: _____ Parent's signature: _____

									 	,	J						
Leve	el 5			/10	D	Lev	el 6									/20	D

Part A: Level 5

Write these numbers in index form.

$$2 22 \times 22 \times 22 \times 22 \times 22$$

Use a calculator to find the basic numeral for:

5 Complete this statement:
$$4^6 \times \underline{} = 4^{14}$$

6 and **7** Plot a graph of $y = 5 \times 2^x$ by first completing the table below (2 marks).

х	0	1	2	3	4	5
у						

- 8 and 9 Plot the values as ordered pairs (2 marks).
- **10** Use your graph to find and complete this ordered pair. (_____, 100)

Part B: Level 6

Use the five index laws to simplify each of the following.

1
$$a^2 \times a^5$$

2
$$3s^2t^3 \times 2s^3t^4$$

3
$$a^5 \div a^2$$

4
$$\frac{18x^3y^3}{6x^2y}$$

5
$$(x^3)^4$$

_____ **6**
$$(6p^4)^0$$

7
$$\left(\frac{3a^2}{b}\right)^3$$

$$8 \frac{w^2x^3 \times x^3y^4}{xy^2 \times w^2x^5}$$

9
$$\frac{(2a^2b^3)^2\times(3ab^2)^3}{2a^4b^3}$$

10
$$2a^0b^2 \times (3a^2b)^0$$

Match each equation with a sketch graph.

11
$$y = 1 + 2x$$

12
$$y = 1 + 2x^2$$

13
$$y = x^2 - 3x + 2$$

14
$$y = \frac{3}{x}$$

15
$$y = \pm \sqrt{x}$$

16
$$y = 3^x$$

Lord Rutherford first identified the nature of radioactivity by studying the behaviour of a radioactive element called radon in an experiment called the mousetrap experiment. Like all radioactive elements radon decays away over time. A graph is shown of the amount of radon against time for a particular experiment.

- 17 How much radon was present at the start of the experiment?
- 18 How many days does it take for the amount of radon to halve? (This is known as the half-life.)
- 19 Estimate how much radon would be present after 24 days.

20 The general formula for radioactive decay is R =where R is the amount of radioactive material left, *s* is the starting amount, *t* is time and *h* is the half-life.

Using the values that you have already calculated, what is the formula for the radioactive decay of radon?

On the way to Smithston, I encountered a lot of traffic and drove at an average speed of 60 kilometres per hour. On the way back, there was less traffic, so I averaged 90 kilometres per hour.

What was my average speed for the round trip?

Index