STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $\ln x = \log_a x$, x > 0

NSW INDEPENDENT 2005

2005
Higher School Certificate
Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 5minutes
- Working time 2 hours
- · Write using black or blue pen
- · Board approved calculators may be used
- A table of standard integrals is provided with this paper
- All necessary working should be shown in every question

Total marks - 84

Attempt Questions 1 - 7

All questions are of equal value

This paper MUST NOT be removed from the examination room

STUDENT NUMBER/NAME:

Student name / number

Marks

2

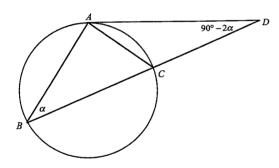
Question 1

Begin a new page

- (a) Evaluate $\sum_{k=1}^{4} (k!)^2$
- (b) Find the acute angle between the lines 2x-y-1=0 and x-2y+1=0.

 Give your answer correct to the nearest degree.
- (c) The equation $2x^3 6x + 1 = 0$ has roots α , β and γ . Evaluate $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.

(d)



Triangle ABC is inscribed in a circle. The tangent to the circle at A meets BC produced at D. $\angle ABC = \alpha$ and $\angle ADC = 90^{\circ} - 2\alpha$, where $0^{\circ} < \alpha < 45^{\circ}$.

- (i) Copy the diagram
- (ii) Give a reason why $\angle DAC = \angle ABC$.

ZADC.

(iii) Show that BC is a diameter of the circle.

1

		Marks
)uesti	ion 2 Begin a new page	
a)	Find the value of $\lim_{x\to 0} \frac{\sin 3x}{2x}$	2
b)(i)	Show that $\cos(A+B) + \cos(A-B) = 2\cos A\cos B$.	1
(ii)	Hence evaluate cos 45° cos 15° in simplest exact form.	2
c)	A(x,7) and $B(y,-11)$ are two points. $M(2,-2)$ is the midpoint of AB.	
	N(4,-5) divides AB internally in the ratio 2:1.	
(i)	Write down two equations in x and y .	2
(ii)	Hence find the values of x and y .	1
(d)	$P(2p, p^2)$ and $Q(2q, q^2)$ are two points on the parabola $x^2 = 4y$. M is the midpoint of PQ .	
(i)	Show that $(p-q)^2 = 2(p^2 + q^2) - (p+q)^2$.	1
(ii)	If P and Q move on the parabola so that $p-q=1$, show that the locus of M is the parabola $x^2=4y-1$ and find its focus.	3

Student name / number

Student name / number

Marks

1

2

2

3

2

2

Student name / number

Marks

2

2

Ouestion 3 Begin a new page

- (a) Consider the function $f(x) = \frac{x^2}{x^2 1}$.
- (i) Find the domain of f(x) and evaluate $\lim_{x\to\infty} f(x)$.
- (ii) Show that f(x) is an even function.
- (iii) Find the coordinates and nature of the stationary point on the curve y = f(x).
- (iv) Sketch the graph of the curve y = f(x) showing the coordinates of the stationary point and the equations of any asymptotes.
- (v) Explain why the function f(x) does not have an inverse.
- (b) Use Mathematical Induction to show that $5^n + 12n 1$ is divisible by 16 for all positive integers $n \ge 1$.

Question 4 Begin a new page

- (a) Consider the function $y = 2\sin^{-1}\frac{x}{3}$.
- (i) Find the domain and range of the function.
- (ii) Sketch the graph of the function showing clearly the coordinates of the endpoints.
- (iii) The region in the first quadrant bounded by the curve $y = 2\sin^{-1}\frac{x}{3}$, the y axis and the line $y = \pi$, is rotated through one complete revolution about the y axis. Find the volume of the solid formed, giving your answer in simplest exact form.
- (b)(i) Show that the equation $e^x + x = 0$ has a real root α such that $-1 < \alpha < 0$.
 - (ii) On the same diagram, draw the graphs of $y = e^x$ and y = -x. Hence deduce that the equation $e^x + x = 0$ has exactly one real root.
 - (iii) If a is taken as an initial approximation to this real root α , use Newton's method to show that the next approximation a_1 is given by $a_1 = \frac{(\alpha 1)e^{\alpha}}{e^{\alpha} + 1}$. Hence if the initial approximation is taken as $\alpha = -0.5$, find the next approximation for α correct to 1 decimal place.

Ouestion 5 Begin a new page

a) Use the substitution u = x + 1 to evaluate $\int_0^{15} \frac{x}{\sqrt{x+1}} dx$

- There are 4 multiple choice questions in a test. For each question there is a probability $\frac{1}{2}$ that Bob answers the question correctly.
- (i) Find the exact probability that Bob answers exactly 2 of the 4 questions correctly.
- (ii) Find the exact probability that the fourth question Bob attempts is the second that he answers correctly.

(c) $\begin{array}{c} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

The chord AB of a circle of radius 10 cm subtends an angle θ radians at the centre O of the circle.

- (i) Show that the perimeter P cm of the minor segment cut off by the chord AB is given by $P = 10\theta + 20\sin\frac{\theta}{2}$.
- (ii) If θ is increasing at a rate of 0.02 radians per second, find the rate at which P is increasing when $\theta = \frac{2\pi}{3}$.

Student name / number

_

Marks

2

1

2

2

2

Question 6

Begin a new page

- (a) The number N of individuals in a population at time t years is given by $N = 100 + Ae^{-kt}$ for some constants A > 0, k > 0. The initial population size is 500, and when the population size is 300, it is decreasing at a rate of 20 individuals per year.
 - (i) Show that $\frac{dN}{dt} = -k(N-100)$.
 - (ii) Show that A = 400 and k = 0.1.
 - (iii) On separate diagrams sketch the graphs of N as a function of t and $\frac{dN}{dt}$ as a function of t.
 - (iv) Find the first year during which the population size falls below 120.
- (b) A particle is moving in a straight line with Simple Harmonic Motion. At time t seconds it has displacement x metres from a fixed point O on the line, velocity vms⁻¹, and acceleration a ms⁻² given by a = -4x + 4. Initially the particle is 2 m to the right of O and is moving away from O with speed $2\sqrt{3}$ ms⁻¹.
 - (i) Use integration to show that $v^2 = -4x^2 + 8x + 12$.
 - (ii) Hence find the centre and amplitude of the motion.
 - (iii) If $x = 1 + 2\cos(2t + \alpha)$ for some $0 < \alpha < 2\pi$, find the exact value of α .

Student name / number

Marks

Ouestion 7

Begin a new page

- (a) A particle is projected from a point O with speed $V \text{ms}^{-1}$ at an angle α above the horizontal where the acceleration due to gravity is $g \text{ ms}^{-2}$. At time t seconds, its horizontal and vertical displacements from O are x metres and y metres respectively where $x = Vt \cos \alpha$ and $y = Vt \sin \alpha \frac{1}{2}gt^2$.
 - (i) Show that the particle has a maximum height H metres and a horizontal range R metres given by $H = \frac{V^2 \sin^2 \alpha}{2g}$ and $R = \frac{V^2 \sin 2\alpha}{g}$.
 - (ii) Show that $R \tan \alpha = 4H$, and hence express R in terms of V, g and H.
- (b)(i) Expand $\left(x+\frac{1}{x}\right)^5$ in descending powers of x.
 - (ii) If $x + \frac{1}{x} = a$, express $x^5 + \frac{1}{x^5}$ in terms of a.

NSW INDEPENDENT TRIAL EXAMS -2005

Trial HSC Mathematics Extension 1 2005 Marking Guidelines

Ouestion 1

(a) Outcomes Assessed: H5

Marking	Guideline

Marking Guidennes		
	Criteria	Marks
	• shows an understanding of the notation (eg writes the sum of squares)	1
	• calculates the sum	

Answer

$$\sum_{k=1}^{4} (k!)^2 = 1^2 + 2^2 + 6^2 + 24^2 = 617$$

(b) Outcomes Assessed: P4

Marking Cuidelines

Marking Guidennes	
Criteria	Marks
• finds the gradients of both lines	1
• writes expression for $\tan \theta$ in terms of these gradients	1
calculates the angle to the nearest degree	1

Answer

The lines have gradients 2 and $\frac{1}{2}$. $\therefore \tan \theta = \left| \frac{2 - \frac{1}{2}}{1 + 2 \times \frac{1}{2}} \right| = \frac{3}{4}$ and $\theta \approx 37^{\circ}$.

(c) Outcomes Assessed: PE3

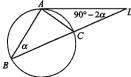
Marking Guidennes	
Criteria	Marks
• writes sum of reciprocals in terms of appropriate sums of products	1
• writes value of one of $\beta \gamma + \gamma \alpha + \alpha \beta$, $\alpha \beta \gamma$	1
• writes value of the remaining expression then evaluates sum of reciprocals	1 1

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta \gamma + \gamma \alpha + \alpha \beta}{\alpha \beta \gamma} = \frac{-3}{\left(-\frac{1}{2}\right)} = 6$$

(d) Outcomes Assessed: PE3

Marking Guidelines	
Criteria	Marks
ii. • quotes alternate segment theorem	1
iii.• finds either $\angle ACD$ or $\angle ACB$ in terms of α giving a reason	1
• explains why $\angle BAC = 90^{\circ}$	1
• deduces that BC is a diameter giving a reason	1

Answer



- ii. The angle between a tangent and a chord drawn to the point of contact is equal to the angle subtended by the chord in the alternate segment.
- iii. $\angle ACB = \alpha + (90^{\circ} 2\alpha)$ (exterior $\angle of \Delta ACD$ is equal to sum of interior opp. $\angle s$) $=90^{\circ}-\alpha$
 - ∴ ∠*BAC* = 90° (\(\alpha\)sum of \(\Delta\)ABC is 180°)
 - ∴ BC is a diameter (∠ in a semi-circle is a right angle)

Ouestion 2

(a) Outcomes Assessed: H5

Marking Guidelines		
	Criteria	Marks
sin h		1
• rearranges expression into form $k \frac{\sin h}{h}$		1
• evaluates limit		

Answer

$$\lim_{x \to 0} \frac{\sin 3x}{2x} = \lim_{x \to 0} \left(\frac{3}{2} \times \frac{\sin 3x}{3x} \right) = \frac{3}{2} \times 1 = \frac{3}{2}$$

(b) Outcomes Assessed: H5

Marking Guidelines

Criteria	Marks
	1
i. • expands LHS and simplifies	1
ii. • uses i. to convert product to a sum of cosines	1
• evaluates in simplest surd form	1

i. $\cos(A+B) = \cos A \cos B - \sin A \sin B$	ii. $2\cos 45^{\circ}\cos 15^{\circ} = \cos(45^{\circ} + 15^{\circ}) + \cos(45^{\circ} - 15^{\circ})$
$\cos(A-B) = \cos A \cos B + \sin A \sin B$	$=\frac{1}{2} + \frac{\sqrt{3}}{2}$
$\therefore \cos(A+B) + \cos(A-B) = 2\cos A\cos B$	$\therefore \cos 45^{\circ} \cos 15^{\circ} = \frac{1+\sqrt{3}}{4}$
	4

(c) Outcomes Assessed: P4

Marking Guidennes		
Criteria		Marks
i. • writes one of the two equations		1
writes the second equation		1
ii • finds the values of x and v		1

Answer

i.
$$\frac{x+y}{2} = 2 \implies x+y=4$$
 (1) ii.
$$(2)-(1) \implies y=8$$
 sub.
$$y=8 \text{ in } (1) \implies x=-4$$
 and
$$\frac{x+2y}{3} = 4 \implies x+2y=12$$
 (2)

(d) Outcomes Assessed: P4, PE3

Marking Guidelines

Walking Galdennes	
Criteria	Marks
i. • establishes result by rearrangement and simplification	
ii. • finds coordinates of M	
• uses (i) to find equation of locus of M	
finds the focus of this parabola	

i.
$$2(p^2 + q^2) - (p+q)^2 = 2p^2 + 2q^2 - \{p^2 + q^2 + 2pq\}$$

= $p^2 + q^2 - 2pq$
= $(p-q)^2$

2

ii. At M,
$$x = \frac{2p+2q}{2} = p+q$$
 and $y = \frac{p^2+q^2}{2}$.

Then using (i), $(p-q)^2 = 4y - x^2$

 $\therefore p-q=1 \implies 1=4y-x^2$ Hence the locus of M is parabola $x^2 = 4y - 1$.

$$x^2 = 4\left(y - \frac{1}{4}\right)$$
 has vertex $\left(0, \frac{1}{4}\right)$

and focal length 1.

Hence focus has coordinates $(0,\frac{5}{4})$.

Question 3

(a) Outcomes Assessed: P5, H5, HE4

Marking Guidelines

Criteria	Marks
i. • writes domain	1
• evaluates the limit with explanation	1
ii. • shows algebraically that $f(-x) = f(x)$	- 1
iii. • finds the first derivative	1
• establishes that there is a maximum turning point at the origin	1
iv. • sketches a curve of correct shape	1
• includes required detail (equations of asymptotes, coordinates of turning point)	1
v ¥ explains why the function does not have an inverse	1

Answer

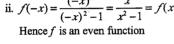
i. Domain
$$\{x: x \neq \pm 1\}$$

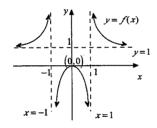
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1}{1 - \frac{1}{x^2}} = \frac{1}{1 - 0} = 1$$

ii.
$$f(-x) = \frac{(-x)^2}{(-x)^2 - 1} = \frac{x^2}{x^2 - 1} = f(x)$$

iii.
$$\frac{dy}{dx} = \frac{2x \cdot (x^2 - 1) - x^2 \cdot 2x}{(x^2 - 1)^2}$$
$$= \frac{-2x}{(x^2 - 1)^2}$$
$$\frac{dy}{dx} = 0 \implies x = 0$$

(0,0) is a maximum turning point.





v. There is a horizontal line which cuts the graph more than once. ($\nu = 2$ cuts the graph twice). Hence there is a y value which corresponds to more than one x value (y=2 corresponds to two different x values).

(b) Outcomes Assessed: HE2

iv.

Marking Guidelines	
Criteria	Marks
• establishes truth of statement for $n=1$	1
• attempts to show that truth of any statement in the sequence forces truth of the next	1
• writes expression in k from $S(k+1)$ in terms of expression in k from $S(k)$	1
• explains why the resulting expression in k is a multiple of 16 if $S(k)$ is true	1

Let S(n), n=1,2,3,... be the sequence of statements $5^n+12n-1=16m$ for some integer m. Consider S(1): $5^1 + 12 \times 1 - 1 = 16 = 16 \times 1$ Hence S(1) is true.

If
$$S(k)$$
 is true: $5^{k}+12k-1=16m$ for some integer m **

Consider $S(k+1)$: $5^{k+1}+12(k+1)-1=5$. $5^{k}+12k+11$

$$=5(5^{k}+12k-1)+16-48k$$

$$=5(16m)+16(1-3k) if $S(k)$ is true (using **)
$$=16\{5m+(1-3k)\} where m, k \text{ and hence}$$

$$\{5m+(1-3k)\} are integers.$$$$

Hence if S(k) is true, then S(k+1) is true. But S(1) is true, hence S(2) is true, and then S(3) is true and so on. Hence by Mathematical Induction S(n) is true for all integers $n \ge 1$.

Ouestion 4

(a) Outcomes Assessed:

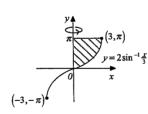
H8. HE4 Marking Guidelines

Warking Guidennes	
Criteria	Marks
i. • writes domain	1
• writes range	1
ii. • sketches showing endpoints consistent with domain and range	1
iii. • writes integral for V with integrand in terms of y	1
• uses trig. identity to write integrand in terms of cos y	1
 evaluates definite integral to find exact value of V 	1

Answer

i. Domain
$$\{x: -3 \le x \le 3\}$$

Range $\{y: -\pi \le y \le \pi\}$



iii. $V = \pi \int_0^{\pi} x^2 dy = \pi \int_0^{\pi} dy$	$\int_{0}^{\pi} \left(3\sin\frac{y}{2}\right)^{2} dy$
$V = \frac{9\pi}{2} \int_0^{\pi} 2\sin^2 \frac{y}{2} dy$	
$=\frac{9\pi}{2}\int_0^\pi \left(1-\cos y\right) \ dx$	by
$=\frac{9\pi}{2}\Big[y-\sin y\Big]_0^\pi$	
$=\frac{9\pi^2}{2}$	Ans. $\frac{9\pi^2}{2}$ cubic units

(b) Outcomes Assessed: P5, PE3

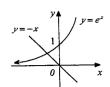
Marking Guidelines

Marking Guidennes	
Criteria	Marks
i. • shows $f(x)$ changes sign in interval $-1 < x < 0$	1
• notes that f is continuous then makes required deduction	1
ii. • sketches both graphs on same diagram	1
 relates single intersection point to fact that equation has exactly one real root 	1
iii. • applies Newton's method to find expression for a_1 in terms of a	
• substitutes for a and calculates a_1 to 1 decimal place	1

Answer

i. $f(x) = e^x + x$ is continuous and $f(-1) = \frac{1}{e} - 1 < 0$ while f(0) = 1 > 0.

Hence f(x) = 0 for some -1 < x < 0. $\therefore e^x + x = 0$ has a real root α such that $-1 < \alpha < 0$.



$$f'(x) = e^x + 1$$

$$f'(x) = a - \frac{e^x}{1 + 1}$$

$$\text{If } a = -0.5$$

$$a_{1} = a - \frac{e^{a} + a}{e^{a} + 1}$$

$$= \frac{a(e^{a} + 1) - (e^{a} + a)}{e^{a} + 1}$$

$$= \frac{(a - 1)e^{a}}{e^{a} + 1}$$

$$a_1 = \frac{-1 \cdot 5 \cdot e^{-0.5}}{e^{-0.5} + 1}$$

$$\approx -0.6$$

$$=\frac{(a-1)e^a}{e^a+1}$$

One intersection point, hence equation $e^x = -x$ has exactly one real root.

Ouestion 5

(a) Outcomes Assessed: HE6

Marking Cuidalines

Marking Guidennes	
Criteria	Marks
• writes dx in terms of du and converts x limits to u limits	1
• converts integrand to a function of u	1
• finds primitive as a function of u	1
substitutes limits and evaluates definite integral	1

Answer

$$u = x + 1
du = dx
x = 0 \Rightarrow u = 1
x = 15 \Rightarrow u = 16$$

$$\frac{x}{\sqrt{x+1}} = \frac{u-1}{\sqrt{u}}
= u^{\frac{1}{2}} - u^{-\frac{1}{2}}
= u^{\frac{1}{2}} - u^{-\frac{1}{2}}
= u^{\frac{1}{2}} - 2u^{\frac{1}{2}} \Big]_{1}^{16}
= \frac{2}{3} (16^{\frac{3}{2}} - 1) - 2(16^{\frac{1}{2}} - 1)
= 36$$

(b) Outcomes Assessed: HE3

Marking Guidelines	
Criteria	Marks
i. • writes numerical expression for required probability	1
evaluates in simplest fraction form	1
ii. • writes numerical expression for required probability	1
evaluates in simplest fraction form	1

Answer

- i. $P(2 \ correct) = {}^{4}C_{2} \left(\frac{1}{3}\right)^{2} \left(\frac{2}{3}\right)^{2} = \frac{8}{27}$
- ii. Bob answers exactly 1 correct from first 3 attempted, then answers the last attempted correctly, with probability ${}^{3}C_{1}(\frac{1}{3})^{1}(\frac{2}{3})^{2} \times \frac{1}{3} = \frac{4}{27}$.

(c) Outcomes Assessed: H5, HE5

Marking Guidelines

Walking Guidennes	
Criteria	Marks
i. • finds length of the arc AB in terms of θ	1
• finds length of the chord AB in terms of θ and hence the perimeter P	1
ii. • finds $\frac{dP}{dt}$ in terms of θ and $\frac{d\theta}{dt}$ • evaluates rate of increase of P	1 1

Answer

Let M be a point on AB such that $OM \triangle AB$.

Then M is the midpoint of AB (radius perpendicular to a chord bisects that chord) Let AM = BM = a.

Also $\angle MOA = \angle MOB = \frac{\theta}{2}$ (corresp. $\angle s$ equal where

 $\Delta MOA \equiv \Delta MOB(RHS)$

Then
$$AB = 2a = 2\left(10\sin\frac{\theta}{2}\right) = 20\sin\frac{\theta}{2}$$

Hence $P = arc AB + AB = 10\theta + 20 \sin \frac{\theta}{2}$

ii.
$$\frac{dP}{dt} = \frac{dP}{d\theta} \times \frac{d\theta}{dt} = \left(10 + 10\cos\frac{\theta}{2}\right)\frac{d\theta}{dt}$$

Hence when
$$\theta = \frac{2\pi}{3}$$
, $\frac{dP}{dt} = 10\left(1 + \cos\frac{\pi}{3}\right) \times 0.02 = 0.3$

.. Perimeter is increasing at a rate 0.3 cms⁻¹

Ouestion 6

(a) Outcomes Assessed: HE3

Marking Guidelines

Criteria	Marks
i. • differentiates	1
ii • substitutes $t = 0$, $N = 500$ into expression for N to find A	1
• substitutes $\frac{dN}{dt} = -20$, $N = 300$ into expression for $\frac{dN}{dt}$ to find k	1
iii. • sketches graph of N as a function of t showing N intercept and asymptote	1 1
• sketches derivative as a function of t showing intercept and asymptote	1 1
iv. • finds value of t when $N = 120$	

Answer

i.
$$N = 100 + Ae^{-kt}$$

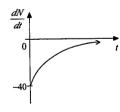
$$\frac{dN}{dt} = -k A e^{-kt}$$
$$= -k (N - 100)$$

ii. When
$$t = 0$$
, $N = 500$

$$\therefore Ae^0 = 400 \qquad \therefore A = 400$$

When
$$N = 300$$
, $\frac{dN}{dt} = -20$

$$\therefore -20 = -k(300 - 100) \qquad \therefore k = 0.1$$



iv.
$$N = 120 \implies 400 e^{-0.1t} = 20$$

$$e^{-0.17} = \frac{1}{20}$$

$$-0.1t = -\ln 20$$

$$t \approx 29.96$$

The population first falls below 120 towards

the end of the 30th year.

(b) Outcomes Assessed: HE3, HE7

Marking Guidelines

Criteria	Marks
 i. • writes \$\frac{d}{dx}(\frac{1}{2}\nu^2) = -4x + 4\$ then finds the primitive • includes and evaluates the constant of integration using initial conditions ii. • finds possible values of x for \$\nu^2 \geq 0\$ • deduces centre and amplitude of motion 	1 1 1 1 1
iii. • uses initial value of x to show $\cos \alpha = \frac{1}{2}$ • finds v as a function of t; uses sign of v initially to deduce 4th quadrant α value	

Answer

i.
$$\frac{d}{dx} \left(\frac{1}{2} v^2 \right) = -4x + 4$$

 $\frac{1}{2} v^2 = -2x^2 + 4x + c$
 $t = 0$
 $x = 2$
 $v = 2\sqrt{3}$ $\Rightarrow c = 6$
 $\frac{1}{2} v^2 = -2x^2 + 4x + 6$
 $\therefore v^2 = -4x^2 + 8x + 12$

ii.
$$\nu^2 = 16 - 4(x - 1)^2$$

$$\nu^2 \ge 0 \implies (x - 1)^2 \le 4$$

$$\therefore -2 \le x - 1 \le 2$$

$$-1 \le x \le 3$$

Hence motion is centred 1m to the right of O with amplitude 2m

iii.
$$x = 1 + 2\cos(2t + \alpha)$$

 $v = -4\sin(2t + \alpha)$
 $t = 0$
 $x = 2$
 $v > 0$
 $\Rightarrow \sin \alpha < 0$
 $\therefore \alpha = 2\pi - \frac{\pi}{3} = \frac{5\pi}{3}$

Ouestion 7

(a) Outcomes Assessed: HE3

Marking Guidelines

Warking Guidennes	
Criteria	Marks
i. • finds time to maximum height	1
• substitutes in expression for y to find H	1
• finds time of flight	1
• substitutes in expression for x to find R	1
ii. • simplifies $\frac{4H}{R}$ to obtain required result	1
• writes $\sin 2\alpha$ in terms of $\frac{4H}{R}$ (t-formula) in expression for range R	1 2
• rearranges resulting formula to make R the subject	

Answer

i.
$$y = Vt\sin\alpha - \frac{1}{2}gt^2$$

$$\frac{dy}{dt} = V\sin\alpha - gt$$
At maximum height, $\frac{dy}{dt} = 0$

$$\therefore t = \frac{V\sin\alpha}{g} \text{ when } y = H$$

$$H = \frac{V^2\sin^2\alpha}{g} - \frac{1}{2}g\frac{V^2\sin^2\alpha}{g^2} = \frac{V^2\sin^2\alpha}{2g}$$

$$y = t \left(V \sin \alpha - \frac{1}{2}gt \right)$$
When $x = R$, $y = 0$ and $t \neq 0$. $\therefore t = \frac{2V \sin \alpha}{g}$

$$R = V \cos \alpha \times \frac{2V \sin \alpha}{g} = \frac{V^2 \sin 2\alpha}{g}$$

ii.
$$\frac{4H}{R} = \frac{2V^2 \sin^2 \alpha}{g} \times \frac{g}{2V^2 \sin \alpha \cos \alpha}$$

$$\therefore R = \frac{V^2}{g} \times \frac{2\left(\frac{4H}{R}\right)}{1 + \left(\frac{4H}{R}\right)^2}$$

$$\frac{4H}{R} = \frac{\sin \alpha}{\cos \alpha} = \tan \alpha$$

$$1 + \left(\frac{4H}{R}\right)^2 = \left(\frac{V^2}{2gH}\right)\left(\frac{4H}{R}\right)^2$$

$$\therefore R \tan \alpha = 4H$$

$$\tan \alpha = \frac{4H}{R} \Rightarrow \sin 2\alpha = \frac{2\left(\frac{4H}{R}\right)}{1 + \left(\frac{4H}{R}\right)^2}$$

$$\therefore R = \frac{4H}{4H} \Rightarrow \frac{V^2}{2gH} - 1$$

$$\therefore R = \frac{4H}{\sqrt{\frac{V^2}{2gH}} - 1}$$

$$\therefore R = \frac{4H}{\sqrt{\frac{V^2}{2gH}} - 1}$$

(b) Outcomes Assessed: PE3

Marking Guidelines

Marking Guideanes	Manle
Criteria	Marks
i. • uses binomial theorem to expand then simplifies	1
ii. • groups terms in pairs $x'' + (\frac{1}{x})''$ and factors $x^3 + (\frac{1}{x})^3$	1
• expresses $x^3 + \left(\frac{1}{x}\right)^3$ in terms of $\left(x + \frac{1}{x}\right)$	1
• substitutes $x + \frac{1}{x} = a$ then rearranges to show required result	<u> </u>

Answe

i.
$$\left(x + \frac{1}{x}\right)^5 = x^5 + 5x^4 \cdot \frac{1}{x} + 10x^3 \left(\frac{1}{x}\right)^2 + 10x^2 \left(\frac{1}{x}\right)^3 + 5x \left(\frac{1}{x}\right)^4 + \left(\frac{1}{x}\right)^5$$

= $x^5 + 5x^3 + 10x + 10\left(\frac{1}{x}\right) + 5\left(\frac{1}{x}\right)^3 + \left(\frac{1}{x}\right)^5$

ii.
$$\left(x + \frac{1}{x}\right)^5 = x^5 + \left(\frac{1}{x}\right)^5 + 5\left\{x^3 + \left(\frac{1}{x}\right)^3\right\} + 10\left(x + \frac{1}{x}\right)$$

But $x^3 + \left(\frac{1}{x}\right)^3 = \left(x + \frac{1}{x}\right)\left\{x^2 - x\frac{1}{x} + \left(\frac{1}{x}\right)^2\right\}$
 $= \left(x + \frac{1}{x}\right)\left\{x^2 + 2x\frac{1}{x} + \left(\frac{1}{x}\right)^2 - 3x\frac{1}{x}\right\}$
 $= \left(x + \frac{1}{x}\right)\left\{\left(x + \frac{1}{x}\right)^2 - 3\right\}$

Hence if
$$(x + \frac{1}{x}) = a$$

 $a^5 = x^5 + (\frac{1}{x})^5 + 5a(a^2 - 3) + 10a$
 $a^5 = x^5 + (\frac{1}{x})^5 + 5a^3 + 5a$
 $\therefore x^5 + \frac{1}{x^5} = a^5 - 5a^3 - 5a$

The Trial HSC examination, marking guidelines /suggested answers and 'mapping grid' have been produced to help prepare students for the HSC to the best of our ability.

Individual teachers/schools may alter parts of this product to suit their own requirements.