# STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left( x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left( x + \sqrt{x^2 + a^2} \right)$$

NOTE: 
$$\ln x = \log_e x$$
,  $x > 0$ 

INDEPENDENT TRIAL HSC 2003

2003
Higher School Certificate
Trial Examination

# Mathematics Extension 2

# **General Instructions**

- Reading time 5minutes
- Working time 3 hours
- Write using black or blue pen
- Board approved calculators may be used
- A table of standard integrals is provided with this paper
- All necessary working should be shown in every question

Total marks - 120

Attempt Questions 1 - 8

All questions are of equal value

This paper MUST NOT be removed from the examination room

STUDENT NUMBER/NAME: .....

2 2

2

2

2

| Question 1                                                                                   | Begin a new page                                                                                   | Marks |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------|
| (a) (i) Find the coordinates and the nature $y = x^3 + 6x^2 + 9x + k$ where k is             | re of the stationary points on the curve real.                                                     | 2     |
| <ul><li>(ii) Hence find the set of values of k has three real and different roots.</li></ul> | for which the equation $x^3 + 6x^2 + 9x + k = 0$                                                   | 2     |
|                                                                                              |                                                                                                    |       |
| (b)(i) Find the domain and range of the $y = f(x)$ showing any intercepts of asymptotes.     | function $f(x) = \tan^{-1} e^x$ . Sketch the curve in the coordinate axes and the equations of any | 3     |
| (ii) Show that $f'(x) = \frac{1}{2}\sin 2y$ .                                                |                                                                                                    | 2     |

(c)



The diagram shows the graph of the function  $f(x) = x - \frac{1}{x}$ .

On separate diagrams sketch the following curves, showing for each any intercepts on the coordinate axes and the equations of any asymptotes:

(i) 
$$y = |f(x)|$$
  
(ii)  $y = \frac{1}{f(x)}$ 

(iii) 
$$y^2 = f(x)$$

| $y = x - \frac{1}{x}$ $y = x - \frac{1}{x}$ |  |
|---------------------------------------------|--|
| 0 1 x                                       |  |

| Question 2                                   | Begin a new page                                                                                    | Marks |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------|-------|
| (a) (i) Find $\int (\sec x + \tan x)^{2}$    | $^{2}dx$ .                                                                                          | 2     |
| (ii) Find $\int \frac{1-x}{1-\sqrt{x}} dx$ . |                                                                                                     | 2     |
| (b) Use the substitution                     | $u = e^x + 1$ to find $\int \frac{e^{2x}}{\left(e^x + 1\right)^2} dx$ .                             | 2     |
| (c) Use the substitution $t$                 | $= \tan \frac{x}{2} \text{ to evaluate } \int_0^{\frac{\pi}{2}} \frac{1}{\cos x + 2\sin x + 3} dx,$ | 4     |

(d)(i) Find the exact value of 
$$\int_0^{\frac{1}{2}} \frac{1}{1-x^2} dx$$
. 2

(ii) If  $I_n = \int_0^{\frac{1}{2}} \frac{x^n}{1-x^2} dx$  for  $n = 0, 1, 2, ...$ , show that  $I_{n-2} - I_n = \frac{1}{(n-1)2^{n-1}}$  3

for  $n = 2, 3, 4, ...$  Hence find the exact value of  $\int_0^{\frac{1}{2}} \frac{x^4}{1-x^2} dx$ .

#### Question 3 Begin a new page

giving the answer correct to three significant figures.

| (a) (i | i) Express the roots of the equation $z^2 + 4z + 8 = 0$ in the form $a + ib$ for real $a, b$ .<br>i) Express the roots of the equation $z^2 + 4z + 8 = 0$ in modulus argument form. | 1<br>2 |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| (b)    | Find all the complex numbers $z = a + ib$ , where a, b are real, such that $ z ^2 + i\overline{z} = 11 + 3i$ .                                                                      | 4      |

| (c)(i) On an Argand diagram mark the points $P$ , $Q$ representing the complex numbers $z_1 = 4 + i$ , $z_2 = 1 + 4i$ respectively. Show how to construct the point $R$ representing $z_1 + z_2$ and explain what type of quadrilateral $OPRQ$ is, where $Q$ is the origin. | 2 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (ii) Find the area of the quadrilateral OPRO.                                                                                                                                                                                                                               | 2 |

| (d)(i) On and Argand diagram shade the region containing all the points representing |   |
|--------------------------------------------------------------------------------------|---|
| (=)(<) on the regard diagram shade the region containing an the points representing  | 2 |
| complex numbers z such that both $ z  \le 1$ and $ z-1  \le \sqrt{2}$ .              | _ |

(ii) Find the exact area of the shaded region.

# Marks **Ouestion 4** Begin a new page (a) The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ , where a > b > 0, has eccentricity $e = \frac{1}{2}$ . The point P(2,3) lies on the ellipse. (i) Find the values of a and b. 3 (ii) Sketch the graph of the ellipse showing clearly the intercepts on the axes, the 3 coordinates of the foci and the equations of the directrices. P(x) is a polynomial of degree at least 2 such that P'(a) = 0. Show that when 3 P(x) is divided by $(x-a)^2$ the remainder is P(a). (c)(i) The equation $x^3 + px^2 + qx + r = 0$ (where p, q, r are non zero) has roots $\alpha$ , $\beta$ , $\gamma$ 3 such that $\frac{1}{\alpha}$ , $\frac{1}{\beta}$ , $\frac{1}{\gamma}$ are consecutive terms in an arithmetic sequence. Show that $\beta = \frac{-3r}{q}$ (ii) The equation $x^3 - 26x^2 + 216x - 576 = 0$ has roots $\alpha$ , $\beta$ , $\gamma$ such that $\frac{1}{\alpha}$ , $\frac{1}{\beta}$ , $\frac{1}{\gamma}$ 3

are consecutive terms in an arithmetic sequence. Find the values of  $\alpha$ ,  $\beta$ ,  $\gamma$ .

| Qu  | estion 5 Begin a new page                                                                                                                                                                                                                                                                                                                                      | Marks       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| (a) | Use integration by parts and the table of standard integrals to show that $\int \sqrt{y^2 + 8} \ dy = \frac{1}{2}y\sqrt{y^2 + 8} + 4\ln(y + \sqrt{y^2 + 8}) + c.$                                                                                                                                                                                              | 4           |
| (b) | S, S' are foci of the hyperbola $x^2 - \frac{y^2}{8} = 1$ . Focal chords RSQ and TS'U are                                                                                                                                                                                                                                                                      |             |
| (ii | perpendicular to the x axis. ) Find the coordinates of the foci S, S'. ) Find the coordinates of Q, R, T and U. ) Use the result in (a) above to find the area of the shaded region.                                                                                                                                                                           | 2<br>1<br>3 |
| (c) | The base of a particular solid is the shaded region in part (b) above. Every cross section of the solid perpendicular to the y axis is an equilateral triangle with one side in the base of the solid. Find the exact volume of the solid.                                                                                                                     | 5           |
| Que | estion 6 Begin a new page                                                                                                                                                                                                                                                                                                                                      |             |
|     | Use DeMoivre's theorem to show that $\cos 4\theta = \cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta$ .<br>Hence find the exact value of $\cos^4 \left(\frac{\pi}{12}\right) + \sin^4 \left(\frac{\pi}{12}\right)$ .                                                                                                                               | 2           |
| (b) | A particle of mass $m$ kg is set in motion with speed $u$ ms <sup>-1</sup> and moves in a straight line before coming to rest. After time $t$ seconds the particle has displacement $x$ metres from its starting point $O$ , velocity $v$ ms <sup>-1</sup> and acceleration $a$ ms <sup>-2</sup> . The resultant force acting on the particle directly opposes |             |

1

6

1

its motion and has magnitude m(1+v) Newtons.

(ii) Find expressions for x in terms of v, v in terms of t and x in terms of t.

(iv) Find the distance travelled and the time taken by the particle in coming to rest.

(i) Show that a = -(1 + v).

(iii) Show that x+v+t=u.

Student name / number .....

Student name / number .....

Marks

2

1

2

2

5

**Question 7** 

Begin a new page

(a)



Two circles pass through the origin O(0,0). The first circle has centre (a,0) and the second has centre (0,b) where a > 0 and b > 0. The line y = mx through Ocuts the first circle again at Q and the second again at P. M is the midpoint of PQ.

(i) Show that M has coordinates  $\left(\frac{a+bm}{1+m^2}, \frac{m(a+bm)}{1+m^2}\right)$ .

3

(ii) Find the equation of the locus of M as m varies and describe this locus geometrically.

(b)



ABC is an acute angled triangle. D, E, F are the midpoints of AB, BC, CA respectively. AG is an altitude of triangle ABC. AG and DF intersect at J.

- (i) Copy the diagram.
- (ii) Show that  $\triangle AJF \equiv \triangle GJF$ .
- (iii) Show that  $\angle FGC = \angle FCG$ .

(iv) Show that DEGF is a cyclic quadrilateral.

3

2

Marks

# **Ouestion 8**

# Begin a new page

(a)  $T_1, T_2, T_3, ...$  is an arithmetic sequence. All the terms of the sequence are positive and the common difference is d.

(i) Show that  $\frac{1}{\sqrt{T_{n-1}} + \sqrt{T_n}} = \frac{\sqrt{T_n} - \sqrt{T_{n-1}}}{d}$  for n = 2, 3, 4, ...(ii) Hence show that  $\frac{1}{\sqrt{T_1} + \sqrt{T_2}} + \frac{1}{\sqrt{T_2} + \sqrt{T_3}} + ... + \frac{1}{\sqrt{T_{n-1}} + \sqrt{T_n}} = \frac{n-1}{\sqrt{T_1} + \sqrt{T_n}}$ 3 for n = 2, 3, 4.

(b)(i) For positive real numbers a, b show that  $a^2 + b^2 \ge 2ab$ . (ii) Hence show for positive real numbers a, b, c, d

 $3(a^2+b^2+c^2+d^2) \ge 2(ab+ac+ad+bc+bd+cd).$ 

(iii) Hence show that if a, b, c, d are positive real numbers such that a+b+c+d=1then  $ab + ac + ad + bc + bd + cd \le \frac{3}{8}$ .

(c)  $x_1, x_2, ... x_p$  are p different even integers and  $y_1, y_2, ... y_q$  are q different odd integers. Show that the sum S of all the products taken three at a time from  $(-1)^{x_1}$ ,  $(-1)^{x_2}$ , ...,  $(-1)^{x_p}$ ,  $(-1)^{y_1}$ ,  $(-1)^{y_2}$ , ...,  $(-1)^{y_q}$ is given by  $S = \frac{1}{6}(p-q)\{(p-q)^2 - 3(p+q) + 2\}.$ 

# 1(a) Outcomes Assessed: (i) H6 (ii) PE3

Marking Guidelines

| Marking Guidennes                                                   |       |  |
|---------------------------------------------------------------------|-------|--|
| <u>Criteria</u>                                                     | Marks |  |
| (i) • finding minimum turning point                                 | 1     |  |
| finding maximum turning point                                       | 1     |  |
| (ii) • noting that k and $k-4$ have opposite signs with explanation | 1 1   |  |
| • finding the set of values of $k$                                  | 1 1   |  |
|                                                                     |       |  |

# Answer

(i) 
$$y = x^3 + 6x^2 + 9x + k$$

$$\frac{dy}{dx} = 3x^2 + 12x + 9$$

$$= 3(x+3)(x+1)$$

$$\frac{d^2y}{dx^2} = 6x + 12$$

$$= 6(x+2)$$

$$x = -1 \Rightarrow \frac{d^2y}{dx^2} = 6 > 0 \text{ and } y = k - 4.$$

$$\therefore (-1, k-4) \text{ is a minimum turning point.}$$

$$x = -3 \Rightarrow \frac{d^2y}{dx^2} = -6 < 0 \text{ and } y = k.$$

$$\therefore (-3, k) \text{ is a maximum turning point.}$$

# (ii)



If the equation has 3 real and different roots, the curve  $y = x^3 + 6x^2 + 9x + k$  must cut the x axis in three distinct points. Hence k, k-4 must have opposite signs.  $\therefore 0 < k < 4$ .

# 1(b) Outcomes Assessed: (i) P5 (ii)HE4

Marking Guidelines

| wiai king Guidelines                                              |       |  |
|-------------------------------------------------------------------|-------|--|
| Criteria                                                          | Marks |  |
| (i) • domain and range                                            | 1     |  |
| intercept and asymptote                                           | l i   |  |
| shape and position                                                | 1     |  |
| (ii) • derivative in terms of $e^x$ (or implicit differentiation) | 1     |  |
| • use of appropriate trig. identities to obtain required result   |       |  |

#### Answer

(i) 
$$f(x) = \tan^{-1} e^x$$
 Domain: All real x



(11)  

$$y = \tan^{-1} e^{x} \Rightarrow \tan y = e^{x}$$

$$\frac{dy}{dx} = \frac{e^{x}}{1 + (e^{x})^{2}} = \frac{\tan y}{1 + \tan^{2} y}$$

$$t = \tan y \Rightarrow \frac{dy}{dx} = \frac{1}{2} \frac{2t}{1 + t^{2}} = \frac{1}{2} \sin 2y.$$

# 1(c) Outcomes Assessed: (i) E6

(ii) E6 (iii) E6

| <u>Criteria</u>                        | Marks |
|----------------------------------------|-------|
| (i) • intercepts and asymptotes        | 1     |
| <ul> <li>shape and position</li> </ul> | 1     |
| (ii) • intercept and asymptotes        | 1     |
| shape and position                     | 1     |
| (iii) intercepts and asymptote         | 1     |
| • shape and position                   | 1     |

## Answer (i)







# 2(a) Outcomes Assessed: (i) H8 (ii) H8

Marking Guidelines

| Criteria                           | Marks |
|------------------------------------|-------|
| (i) • simplification of integrand  | 1     |
| • primitive function               | 1     |
| (ii) • simplification of integrand | 1     |
| • primitive function               | l î   |

#### Answer

(i) 
$$\int (\sec x + \tan x)^2 dx = \int (2\sec^2 x - 1 + 2\sec x \tan x) dx = 2\tan x - x + 2\sec x + c = 2(\sec x + \tan x) - x + c$$

(ii) 
$$\int \frac{1-x}{1-\sqrt{x}} dx = \int \frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{1-\sqrt{x}} dx = \int \left(1+\sqrt{x}\right) dx = x + \frac{2}{3}x^{\frac{3}{2}} + c = \frac{1}{3}x\left(3+2\sqrt{x}\right) + c$$

# 2(b) Outcomes Assessed: HE6

Marking Guidelines

| waiking Guidennes                  |       |  |
|------------------------------------|-------|--|
| Criteria                           | Marks |  |
| • integral in terms of u           |       |  |
| • primitive function in terms of x |       |  |

# Answer

$$\begin{aligned} u &= e^{x} + 1 \\ du &= e^{x} dx \end{aligned} \qquad \int \frac{e^{2x}}{\left(e^{x} + 1\right)^{2}} dx = \int \frac{e^{x}}{\left(e^{x} + 1\right)^{2}} \cdot e^{x} dx \qquad \int \frac{e^{2x}}{\left(e^{x} + 1\right)^{2}} dx = \ln u + \frac{1}{u} + c \\ &= \int \frac{u - 1}{u^{2}} du \qquad \qquad = \ln \left(e^{x} + 1\right) + \frac{1}{e^{x} + 1} + c \\ &= \int \left(\frac{1}{u} - \frac{1}{u^{2}}\right) du \end{aligned}$$

# 2(c) Outcomes Assessed: HE6

| Marking | Guidelines |
|---------|------------|
|         |            |

| THAT KING Guidelines                               |       |
|----------------------------------------------------|-------|
| Criteria                                           | Marks |
| • limits in terms of $t$ and $dx$ in terms of $dt$ | 1     |
| • integral in terms of t in simplified form        | 1     |
| • primitive function                               | 1     |
| • evaluation correct to 3 significant figures      | 1     |
|                                                    | 1 1   |

#### Answei

| Answer                                       |                                            |                                                                                             |
|----------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------|
| $t = \tan \frac{x}{2}$                       | $\cos x + 2\sin x + 3$                     | $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ 1                                                   |
| $dt = \frac{1}{2}\sec^2\frac{x}{2} dx$       | $=\frac{1-t^2+4t+3(1+t^2)}{1+t^2}$         | $I = \int_0^{\frac{\pi}{2}} \frac{1}{\cos x + 2\sin x + 3} \ dx$                            |
| $dt = \frac{1}{2} \left( 1 + t^2 \right) dx$ | $=\frac{1+t^2}{1+t^2}$                     | $= \int_{0}^{1} \frac{1+t^{2}}{2\{1+(t+1)^{2}\}} \cdot \frac{2}{1+t^{2}} dt$                |
| $dx = \frac{2}{1+t^2} dt$                    | $=\frac{2(t^2+2t+2)}{1+t^2}$               | $\int_{0}^{\infty} 2\left\{1+\left(t+1\right)^{2}\right\} \cdot \frac{1+t^{2}}{1+t^{2}} dt$ |
| $x = 0 \Rightarrow t = 0$                    | $=\frac{2\left\{1+(t+1)^2\right\}}{1+t^2}$ | $= \int_0^1 \frac{1}{1 + (t+1)^2}  dt$                                                      |
| $x = \frac{\pi}{2} \Longrightarrow t = 1$    |                                            | $= \left[\tan^{-1}(t+1)\right]_0^1$                                                         |
|                                              |                                            | $\therefore I = \tan^{-1} 2 - \frac{\pi}{4} \approx 0.322$                                  |

# 2(d) Outcomes Assessed: (i) E8 (ii) E8

# Marking Guidelines

| The state of the s |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marks |
| (i) • expressing integrand in partial fraction form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1     |
| • evaluation of integral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1     |
| (ii) • simplification of $I_{n-2} - I_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1     |
| • evaluation of $I_{n-2} - I_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| • evaluation of $I_4$ using the recurrence relation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1     |

# Answer

(i)  

$$\int_{0}^{\frac{1}{2}} \frac{1}{1-x^{2}} dx = \frac{1}{2} \int_{0}^{\frac{1}{2}} \left(\frac{1}{1-x} + \frac{1}{1+x}\right) dx$$

$$= \frac{1}{2} \left[-\ln(1-x) + \ln(1+x)\right]_{0}^{\frac{1}{2}}$$

$$= \frac{1}{2} \left[\ln\left(\frac{1+x}{1-x}\right)\right]_{0}^{\frac{1}{2}}$$

$$= \frac{1}{2} (\ln 3 - \ln 1)$$

$$= \frac{1}{2} \ln 3$$

(ii)
$$I_{n-2} - I_n = \int_0^{\frac{1}{2}} \frac{x^{n-2} - x^n}{1 - x^2} dx$$

$$= \int_0^{\frac{1}{2}} \frac{x^{n-2} (1 - x^2)}{1 - x^2} dx$$

$$= \int_0^{\frac{1}{2}} x^{n-2} dx$$

$$= \frac{1}{n-1} [x^{n-1}]_0^{\frac{1}{2}}$$

$$= \frac{1}{(n-1)2^{n-1}}$$

# Hence

$$I_0 - I_2 = \frac{1}{2}$$

$$I_2 - I_4 = \frac{1}{24}$$

$$\therefore I_4 = I_0 - \frac{13}{24} = \frac{1}{2} \ln 3 - \frac{13}{24}$$

$$\therefore \int_0^{\frac{1}{2}} \frac{x^4}{1 - x^2} dx = \frac{1}{2} \ln 3 - \frac{13}{24}$$

# 3(a) Outcomes Assessed: (i) E3 (ii) E3

# Marking Guidelines

| Marks |
|-------|
| Warks |
| 1     |
| 1 1   |
| 1     |
|       |

# Answer



# 3(b) Outcomes Assessed: E3

# **Marking Guidelines**

| Tital Ting Outdonness                            |       |
|--------------------------------------------------|-------|
| Criteria                                         | Marks |
| • equation in term of a and b                    | 1     |
| equating real and imaginary parts                | 1     |
| • solution of simultaneous equations for a and b | 1     |
| • values of solutions for z                      | 1     |

#### Answer

| $z = a + ib$ $ z ^2 + i\bar{z} = 11 + 3i$ | Equating real and imaginary parts:<br>$a = 3$ , $9 + b^2 + b = 11$ | $ \begin{vmatrix} a=3 \\ b=1 \end{vmatrix}  or  a=3 \\ b=-2 \end{vmatrix} $ |
|-------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------|
| $a^2 + b^2 + i(a - ib) = 11 + 3i$         | $\therefore b^2 + b - 2 = 0$                                       | _                                                                           |
| $(a^2+b^2+b)+ia=11+3i$                    | (b+2)(b-1)=0                                                       | z=3+i  or  z=3-2i                                                           |

# 3(c) Outcomes Assessed: (i) E3 (ii) E3

#### Marking Guidelines

| Tranking Guidelines                          |       |
|----------------------------------------------|-------|
| Criteria                                     | Marks |
| (i) • construction of point R                | 1     |
| • classification of <i>OPRQ</i> with reasons | 1     |
| (ii)• lengths of both diagonals              | 1 1   |
| • area of OPRQ                               | Î     |

# Answer

(i) P(4,1), Q(1,4) represent  $z_1 = 4 + i$ ,  $z_2 = 1 + 4i$  respectively. Complete the parallelogram OPRQ to show the point R representing the sum  $z_1 + z_2 = 5 + 5i$ . Since  $OP = OQ = \sqrt{17}$ , OPRQ is a rhombus.



(ii)  $PQ = 3\sqrt{2}$   $R(5,5) \Rightarrow OR = 5\sqrt{2}$ Hence OPRQ has area  $\frac{1}{2} \times 3\sqrt{2} \times 5\sqrt{2} = 15 \text{ sq. units.}$ 

# 3(d) Outcomes Assessed: (i) E3

Marking Cuidelines

| Training Guidelines                          |       |
|----------------------------------------------|-------|
| Criteria                                     | Marks |
| (i) • sketch of both circles                 | 1     |
| • region shaded                              | 1     |
| (ii)• area of semi-circle or area of segment |       |
| • sum of area of semi-circle and segment     | 1     |
| 50811011                                     |       |

#### Answer



Shaded region is composed of semicircle radius 1, and segment of circle radius  $\sqrt{2}$  cut off by chord subtending right angle at centre.

Area is  $\frac{1}{2}\pi + \frac{1}{2} \cdot 2(\frac{\pi}{2} - \sin \frac{\pi}{2}) = \pi - 1$  square units.

#### 4(a) Outcomes Assessed: (i) E4 (ii) E3

Marking Guidelines

| Wat king Guidelines                                          |       |
|--------------------------------------------------------------|-------|
| Criteria                                                     | Marks |
| (i) • relation between $a^2$ , $b^2$ using $e = \frac{1}{2}$ | 1     |
| • relation between $a^2$ , $b^2$ using coordinates of P      | 1     |
| • values of a and b                                          | 1     |
| (ii) • ellipse with intercepts on axes                       | 1     |
| foci with coordinates                                        | 1     |
| directrices with equations                                   | 1     |

#### Answer

(i) 
$$e = \frac{1}{2} \Rightarrow b^2 = a^2 \left(1 - \frac{1}{4}\right) = \frac{3}{4}a^2$$
  
 $P(2,3)$  on ellipse  $\Rightarrow \frac{4}{a^2} + \frac{9}{b^2} = 1$   
 $\therefore \frac{4}{a^2} + \frac{12}{a^2} = 1$   
 $\therefore a^2 = 16, b^2 = 12$ 

 $\therefore a = 4, b = 2\sqrt{3}$ 



# 4(b) Outcomes Assessed: E4

Moulting Caridalia

| Marks |
|-------|
| 1     |
| 1     |
| 1     |
|       |

Divisor has degree 2, hence remainder has degree < 2. Let the remainder be cx + d, c and d constants. Using the division transformation,  $P(x) = (x-a)^2 Q(x) + cx + d$ , where Q(x) is a polynomial.

Now 
$$P'(x) = 2(x-a)Q(x) + (x-a)^2 Q'(x) + c \implies c = P'(a) = 0$$
  
Then  $P(x) = (x-a)^2 Q(x) + d \implies d = P(a)$ . Hence remainder is  $P(a)$ .

#### 4(c) Outcomes Assessed: (i) E4 (ii) E4

Marking Guidelines

| <u>Criteria</u>                                                                                                      | Marks |
|----------------------------------------------------------------------------------------------------------------------|-------|
| (i) • deduction that $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{3}{\beta}$ using property of A.P | 1     |
| • expressing $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ in terms of coefficients of equation            | 1     |
| deducing required result                                                                                             | 1     |
| (ii)• finding the value of $\beta$                                                                                   | 1     |
| • values of $\alpha + \gamma$ , $\alpha \gamma$                                                                      | 1     |
| • values of $\alpha$ , $\lambda$ .                                                                                   | 1     |

(i) 
$$\frac{1}{\alpha}$$
,  $\frac{1}{\beta}$ ,  $\frac{1}{\gamma}$  in AP  $\Rightarrow \frac{1}{\beta} - \frac{1}{\alpha} = \frac{1}{\gamma} - \frac{1}{\beta} \Rightarrow \frac{2}{\beta} = \frac{1}{\alpha} + \frac{1}{\gamma}$ . Then  $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{3}{\beta}$   
But  $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta\gamma + \gamma\alpha + \alpha\beta}{\alpha\beta\gamma} = -\frac{q}{r}$ . Hence  $\frac{3}{\beta} = -\frac{q}{r}$ .  $\therefore \beta = \frac{-3r}{q}$ 

(ii) 
$$x^3 - 26x^2 + 216x - 576 = 0$$
 such that  $\frac{1}{\alpha}$ ,  $\frac{1}{\beta}$ ,  $\frac{1}{\gamma}$  in AP  $\Rightarrow \beta = \frac{-3r}{q} = \frac{3 \times 576}{216} = 8$   
Then  $\alpha + \gamma = 26 - 8 = 18$  and  $\alpha \gamma = 576 \div 8 = 72$ .

Hence  $\alpha$ ,  $\gamma$  zeros of  $x^2 - 18x + 72 = (x - 12)(x - 6)$ .  $\alpha$ ,  $\beta$ ,  $\gamma$  are 6, 8, 12 or 12, 8, 6 respectively.

# 5(a) Outcomes Assessed: E8

Marking Guidelines

| That king Galdennes                                   |       |
|-------------------------------------------------------|-------|
| Criteria                                              | Marks |
| • integration by parts                                | 1     |
| • rearrangement of integrand into appropriate form    | 1     |
| • identifying appropriate entry in table of integrals | 1     |
| • primitive function                                  | 1     |

$$\int \sqrt{y^2 + 8} \, dy = y\sqrt{y^2 + 8} - \int y \cdot \frac{1}{2}(y^2 + 8)^{-\frac{1}{2}} \cdot 2y \, dy$$

$$= y\sqrt{y^2 + 8} - \int (y^2 + 8 - 8) \cdot (y^2 + 8)^{-\frac{1}{2}} \, dy$$

$$= y\sqrt{y^2 + 8} - \int \left\{ (y^2 + 8)^{\frac{1}{2}} - 8(y^2 + 8)^{-\frac{1}{2}} \right\} \, dy$$

$$= y\sqrt{y^2 + 8} - \int \sqrt{y^2 + 8} \, dy + 8 \int \frac{1}{\sqrt{y^2 + 8}} \, dy$$

$$\therefore 2\int \sqrt{y^2 + 8} \, dy = y\sqrt{y^2 + 8} + 8 \int \frac{1}{\sqrt{y^2 + 8}} \, dy$$

$$= y\sqrt{y^2 + 8} + 8 \ln(y + \sqrt{y^2 + 8}) + c_1$$

$$\therefore \int \sqrt{y^2 + 8} \, dy = \frac{1}{2}y\sqrt{y^2 + 8} + 4 \ln(y + \sqrt{y^2 + 8}) + c$$

# 5(b) Outcomes Assessed: (i) E4 (ii) E4 (iii) H8 Marking Guidelines

| Criteria                                                               | Marks |
|------------------------------------------------------------------------|-------|
| (i) • value of eccentricity e                                          | 1     |
| <ul> <li>coordinates of both foci</li> </ul>                           | 1     |
| (ii) • coordinates of all 4 points                                     | 1     |
| (iii)• expression for area in integral form                            | 1     |
| <ul> <li>writing primitive function and substituting limits</li> </ul> | 1     |
| • value of definite integral in simplified form                        | 1     |

# Answer

(i) 
$$x^2 - \frac{y^2}{8} = 1$$
  $b^2 = a^2(e^2 - 1) \Rightarrow e^2 - 1 = 8$   $\therefore e = 3$ . Foci are  $S(3,0)$ ,  $S'(-3,0)$ .

(ii) 
$$x = \pm 3 \Rightarrow y^2 = 64$$
 ::  $Q(3, -8)$ ,  $R(3, 8)$ ,  $T(-3, 8)$ ,  $U(-3, -8)$ 

$$A = 4 \int_{0}^{8} \sqrt{1 + \frac{y^{2}}{8}} \, dy \qquad A = \sqrt{2} \left[ \frac{1}{2} y \sqrt{y^{2} + 8} \right]_{0}^{8} + 4\sqrt{2} \left[ \ln(y + \sqrt{y^{2} + 8}) \right]_{0}^{8}$$

$$= \sqrt{2} \int_{0}^{8} \sqrt{y^{2} + 8} \, dy \qquad = \sqrt{2} \left( 4 \times 6\sqrt{2} \right) + 4\sqrt{2} \left[ \ln(8 + 6\sqrt{2}) - \ln(2\sqrt{2}) \right]$$

$$= 48 + 4\sqrt{2} \ln(3 + 2\sqrt{2})$$

# 5(c) Outcomes Assessed: (i) E7

# Marking Guidelines

| - Guidelines                                          |       |
|-------------------------------------------------------|-------|
| Criteria                                              | Marks |
| area of cross section of typical equilateral triangle | 1     |
| • derivation of volume as a definite integral         | 1     |
| • simplification of integrand                         | 1     |
| • primitive function and substitution of limits       | 1     |
| • exact volume in simplest form                       | 1     |

#### Answer

| ANSWEI                                                                                                                      |                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Cross section is equilateral triangle with                                                                                  | \$ \sqrt{3}                                                                        |
| side length $2x$ , where $x^2 - \frac{y^2}{8} = 1$ .                                                                        | $V = 2 \lim_{\delta y \to 0} \sum_{y=0}^{8} \frac{\sqrt{3}}{8} (y^2 + 8) \delta y$ |
| Hence area of cross section is                                                                                              | $\therefore V = \frac{\sqrt{3}}{4} \int_0^8 \left( y^2 + 8 \right) dy$             |
| $\frac{1}{2}(2x)^2 \sin 60^\circ = 2\left(1 + \frac{y^2}{8}\right) \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{8}(y^2 + 8).$ | $= \frac{\sqrt{3}}{4} \left[ \frac{1}{3} y^3 + 8y \right]_0^8$                     |
| Volume of slice is $\delta V = \frac{\sqrt{3}}{8} (y^2 + 8) \delta y$ .                                                     | $=\frac{\sqrt{3}}{4}\left(\frac{512}{3}+64\right)$                                 |
| Hence volume of solid is $V$ where                                                                                          | Volume is $\frac{176\sqrt{3}}{3}$ cu. units                                        |

# 6(a) Outcomes Assessed: (i) E3 (ii) H5

# Marking Guidelines

| Criteria                                                                                                                                                               | Marks |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| (i) • De Moivre's theorem to simplify $(\cos \theta + i \sin \theta)^4$                                                                                                | 1     |
| • using binomial expansion equating real parts to obtain required result (ii) • expressing $\cos^4 \theta + \sin^4 \theta$ in terms of $\cos 4\theta$ , $\sin 2\theta$ | 1 1   |
| • substitution $\theta = \frac{\pi}{12}$                                                                                                                               | 1     |
| • exact value in simplest form                                                                                                                                         | 1     |

# Answer

(i) Using De Moivre's theorem,  $\cos 4\theta = \text{Re}(\cos \theta + i\sin \theta)^4$ . Using the binomial theorem,  $\text{Re}(\cos \theta + i\sin \theta)^4 = \cos^4 \theta + ^4C_2\cos^2 \theta(i\sin \theta)^2 + (i\sin \theta)^4$ Hence  $\cos 4\theta = \cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta$ 

(i) 
$$\cos^4 \theta + \sin^4 \theta = \cos 4\theta + 6\cos^2 \theta \sin^2 \theta$$
  $\cos^4 \frac{\pi}{12} + \sin^4 \frac{\pi}{12} = \cos \frac{\pi}{3} + \frac{3}{2}\sin^2 \frac{\pi}{6}$   $= \cos 4\theta + \frac{3}{2}\sin^2 2\theta$   $= \frac{1}{2} + \frac{3}{8} = \frac{7}{8}$ 

6(b) Outcomes Assessed: (i) E5 (ii) E5 (iii) E5 (iv) E5
Marking Guidelines

| <u>Criteria</u>                                     | Marks |
|-----------------------------------------------------|-------|
| (i) • use Newton's 2nd law to show result           | 1     |
| (ii) • expression for $\frac{dx}{dx}$ in terms of v |       |
| dv                                                  | 1     |
| • integration to find $x$ in terms of $v$           | 1     |
| • expression for $\frac{dt}{dt}$ in terms of $v$    | 1     |
| av                                                  | 1     |
| • integration to find $t$ in terms of $v$           | 1     |
| • expression for $v$ in terms of $t$                | 1     |
| • expression for $x$ in terms of $t$                | 1     |
| (iii) • showing required result                     | 1     |
| (iv) • distance travelled                           |       |
| • time taken                                        | 1 1   |

#### Answer

(i) By Newton's 2nd law,  $m\ddot{x} = -m(1+v)$ . Hence a = -(1+v).

| `                                                                                                                                                                               | ,                                                                                                                                          |                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| $v\frac{dv}{dx} = -(1+v)$ $\frac{dv}{dx} = -\frac{1+v}{v}$                                                                                                                      | $\frac{dv}{dt} = -(1+v)$ $\frac{dt}{dv} = -\frac{1}{1+v}$                                                                                  | $x = u - v + \ln\left(\frac{1+v}{1+u}\right)$ $x = u - (1+u)e^{-t} + 1 - t$ |
| $\frac{dx}{dv} = -\frac{v}{1+v}$ $\frac{dx}{dv} = -1 + \frac{1}{1+v}$ $x = -v + \ln(1+v) + c$ $t = 0$ $x = 0$ $v = u$ $\Rightarrow x = u - v + \ln\left(\frac{1+v}{1+u}\right)$ | $t = -\ln(1+\nu)A$ $t = 0$ $v = u$ $\Rightarrow t = -\ln\left(\frac{1+\nu}{1+u}\right)$ $e^{-t} = \frac{1+\nu}{1+u}$ $v = (1+u)e^{-t} - 1$ |                                                                             |
| $v = u$ $ \lambda - u - v + \ln \left( \frac{1 + u}{1 + u} \right) $                                                                                                            |                                                                                                                                            |                                                                             |
|                                                                                                                                                                                 |                                                                                                                                            |                                                                             |

(iii) 
$$x = u - v + \ln\left(\frac{1+v}{1+u}\right) = u - v - t$$
  $\therefore x + v + t = u$ 

(iv)  $v = 0 \Rightarrow x = u - \ln(1 + u)$ . Hence particle travels  $\{u - \ln(1 + u)\}$  metres in coming to rest.  $v = 0 \Rightarrow t = \ln(1 + u)$ . Hence particle takes  $\ln(1 + u)$  seconds to come to rest.

#### 7(a) Outcomes Assessed: (i) P4 (ii) P4

Marking Cuideling

| Criteria                                            | Marks |
|-----------------------------------------------------|-------|
| (i) • equations of both circles                     | 1     |
| • coordinates of P                                  | 1     |
| $\bullet$ coordinates of $Q$                        | 1     |
| • coordinates of $M$                                |       |
| (ii) • $m$ in terms of $x$ , $y$ coordinates of $M$ | 1     |
| • equation of locus of M                            | 1     |
| • geometric description of locus of M.              | 1     |

# Answer

(i) Q lies on circle centre (a,0), radius a, with equation  $(x-a)^2 + y^2 = a^2$ .

At 
$$Q$$
,  $y = mx \Rightarrow (x-a)^2 + m^2x^2 = a^2 \Rightarrow (1+m^2)x^2 - 2ax = 0$ .  $\therefore Q\left(\frac{2a}{1+m^2}, \frac{2ma}{1+m^2}\right)$ 

P lies on circle centre (0,b), radius b, with equation  $x^2 + (y-b)^2 = b^2$ 

At 
$$P$$
,  $y = mx \Rightarrow x^2 + (mx - b)^2 = b^2 \Rightarrow (1 + m^2)x^2 - 2mbx = 0$ .  $\therefore P\left(\frac{2mb}{1 + m^2}, \frac{2m^2b}{1 + m^2}\right)$ 

Hence midpoint PQ has coordinates  $\left(\frac{2a+2mb}{2(1+m^2)}, \frac{2ma+2m^2b}{2(1+m^2)}\right)$   $\therefore M\left(\frac{a+bm}{1+m^2}, \frac{m(a+bm)}{1+m^2}\right)$ 

(ii) At M,  $(1+m^2)x = a+bm$  and  $m = \frac{y}{x}$ ,  $m \neq 0$ .

$$\left(1 + \frac{y^2}{x^2}\right)x = a + b\frac{y}{x}$$
$$x^2 + y^2 = ax + by$$

x(x-a)+v(v-b)=0

This is the equation of a circle on diameter OC, where O is the origin and C has coordinates C(a,b).

Alternatively, circle with centre  $(\frac{1}{2}a, \frac{1}{2}b)$  and radius  $\frac{1}{2}\sqrt{a^2+b^2}$ . The points (a,0), (0,b) are excluded.

#### 7(b) Outcomes Assessed: (i) (ii) **H5** (iii) H5 (iv) PE3 Marking Guidelines

| Harking Guidennes                 |       |
|-----------------------------------|-------|
| Criteria                          | Marks |
| (i) • copy diagram                | 0     |
| (ii) • show $AJ = GJ$             | 1     |
| • show $A\hat{J}F = G\hat{J}F$    | 1     |
| • congruence proof                | 1     |
|                                   | 1     |
| (iii) • show $GF = CF$            | 1     |
| deduce required angles equal      | 1     |
| (iv) • show DECF is parallelogram | Î     |
| • deduce $\hat{FCG} = \hat{EDF}$  | 1     |
| • deduce quadrilateral is cyclic  | 1     |
| deduce quadrifateral is cyclic    | 1     |

### Answer

(i)



(ii)

 $DF \parallel BC$ (line joining midpoints of two sides of  $\triangle ABC$  is parallel to 3rd side)

 $\therefore A\hat{J}F = A\hat{G}C$  (corresp.  $\angle$  s with || lines are equal)

(Altitude  $AG \perp BC \Rightarrow A\hat{G}C = 90^{\circ}$ )

 $\therefore G\hat{J}F = 90^{\circ}$ (Adj. supplementary \( \alpha \) s add to 180°)

 $\therefore A\hat{J}F = G\hat{J}F$ 

Also in  $\triangle AGC$ ,  $JF \parallel GC$  ( $DF \parallel BC$  proven above) and F is the midpoint of AC (given)

 $\therefore AJ = GJ$  (line parallel to one side cuts other sides in proportion)

Now in  $\triangle AJF$ ,  $\triangle GJF$ JF is common  $A\hat{J}F = G\hat{J}F$ (proven) AJ = GJ(proven)

 $\therefore \Delta AJF \equiv \Delta GJF \ (SAS)$ 

(iii) GF = AF (corresp. sides of congr.  $\Delta$ 's are equal) AF = CF (F given midpoint of AC)

 $\therefore F\hat{G}C = F\hat{C}G \text{ (equal } \angle \text{'s opp. equal sides in } \Delta GFC)$ 

 $DE \parallel AC$  and  $DF \parallel BC$  (line joining midpoints of two sides of  $\Delta ABC$  is parallel to 3rd side) .. DFCE is a parallelogram (both pairs of opp. sides parallel)

 $\therefore F\hat{C}G = E\hat{D}F$  (opp.  $\angle$ 's in parallelogram are equal)

 $\therefore F\hat{G}C = E\hat{D}F \text{ (since } F\hat{G}C = F\hat{C}G \text{ proven above)}$ 

Hence quadrilateral DEGF is cyclic (exterior  $\angle$  equal to interior opposite  $\angle$ )

# 8(a) Outcomes Assessed: (i) H5

Marking Guidelines

| TAXIMIS GRACINES                    |       |
|-------------------------------------|-------|
| Criteria                            | Marks |
| (i) • use defining property of AP   | 1     |
| rearrange to obtain required result | 1     |
| (ii) • use result to simplify sum   | 1     |
| • rationalise numerator             | 1     |
| • show required result              | 1     |
| show required result                | 1     |

#### Answer

$$d = T_n - T_{n-1} = \left(\sqrt{T_{n-1}} + \sqrt{T_n}\right)\left(\sqrt{T_n} - \sqrt{T_{n-1}}\right)$$

$$s = \frac{1}{\sqrt{T_1} + \sqrt{T_2}} + \frac{1}{\sqrt{T_2} + \sqrt{T_3}} + \dots + \frac{1}{\sqrt{T_{n-1}} + \sqrt{T_n}}$$

$$= \frac{1}{d} \left\{ \left( \sqrt{T_2} - \sqrt{T_1} \right) + \left( \sqrt{T_3} - \sqrt{T_2} \right) + \dots + \left( \sqrt{T_n} - \sqrt{T_{n-1}} \right) \right\}$$

$$= \frac{1}{d} \left( \sqrt{T_n} - \sqrt{T_1} \right)$$

$$= \frac{1}{d} \left( \sqrt{T_n} - \sqrt{T_1} \right)$$

$$= \frac{T_n - T_1}{d} \cdot \frac{1}{\sqrt{T_n} + \sqrt{T_1}}$$

$$= \frac{n-1}{d} \cdot \frac{1}{\sqrt{T_n} + \sqrt{T_1}}$$

$$\therefore s = \frac{1}{d} \cdot \frac{\left(\sqrt{T_n} - \sqrt{T_1}\right)\left(\sqrt{T_n} + \sqrt{T_1}\right)}{\sqrt{T_n} + \sqrt{T_1}}$$

$$= \frac{T_n - T_1}{d} \cdot \frac{1}{\sqrt{T_n} + \sqrt{T_1}}$$

$$= \frac{n - 1}{\sqrt{T_n} + \sqrt{T_1}}$$

since  $T_n - T_1 = (n-1)d$ 

# 8(b) Outcomes Assessed: (i) PE3 (ii) PE3 (iii) PE3

**Marking Guidelines** 

| Criteria                                                                                              | Marks    |
|-------------------------------------------------------------------------------------------------------|----------|
| (i) • prove result                                                                                    | 11141113 |
| (ii) • write pairwise inequalities                                                                    | 1        |
| • combine to obtain required result                                                                   | 1 1      |
| (iii) • write sum of squares in terms of sum of products taken two at a time • obtain required result | l I      |
|                                                                                                       | 1        |

# Answer

(i) 
$$a^{2} + b^{2} - 2ab = (a - b)^{2} \ge 0$$
 (ii)  $a^{2} + b^{2} \ge 2ab$   $b^{2} + c^{2} \ge 2bc$   $\therefore a^{2} + b^{2} \ge 2ab$   $a^{2} + c^{2} \ge 2ac$   $b^{2} + d^{2} \ge 2bd$   $a^{2} + d^{2} \ge 2ad$   $c^{2} + d^{2} \ge 2cd$ 

$$3(a^2 + b^2 + c^2 + d^2) \ge 2(ab + ac + ad + bc + bd + cd)$$

(iii) 
$$a^2 + b^2 + c^2 + d^2 = (a+b+c+d)^2 - 2(ab+ac+ad+bc+bd+cd)$$
  
But  $a+b+c+d=1$ . Hence, using (ii), 
$$3(a^2+b^2+c^2+d^2) = 3 - 6(ab+ac+ad+bc+bd+cd)$$

$$2(ab+ac+ad+bc+bd+cd) \le 3 - 6(ab+ac+ad+bc+bd+cd)$$

$$8(ab+ac+ad+bc+bd+cd) \le 3$$

$$(ab+ac+ad+bc+bd+cd) \le 3$$

# 8(c) Outcomes Assessed: E9

**Marking Guidelines** 

| <u>Criteria</u>                                                | Marks |
|----------------------------------------------------------------|-------|
| • count the number of ways of getting a product of +1          | 1     |
| • count the number of ways of getting a product of -1          | 1     |
| • expression for S                                             | î     |
| • simplification of expression for S                           | 1     |
| • factoring and rearranging expression to obtain required form | 1     |

# Answer

$$(-1)^{x_k} = 1$$
,  $1 \le k \le p$  while  $(-1)^{y_k} = -1$ ,  $1 \le k \le q$ 

There are 
$${}^{p}C_{3} = \frac{1}{6}p(p-1)(p-2)$$
 terms of the form  $(-1)^{x_{1}}(-1)^{x_{2}}(-1)^{x_{3}}$  with a sum  $\frac{1}{6}p(p-1)(p-2)$ . There are  ${}^{p}C_{2} \times q = \frac{1}{2}pq(p-1)$  terms of the form  $(-1)^{x_{1}}(-1)^{x_{2}}(-1)^{x_{3}}$  with a sum  $-\frac{1}{2}pq(p-1)$ . There are  $p \times {}^{q}C_{2} = \frac{1}{2}pq(q-1)$  terms of the form  $(-1)^{x_{1}}(-1)^{y_{2}}(-1)^{y_{3}}$  with a sum  $\frac{1}{2}pq(q-1)$ . There are  ${}^{q}C_{3} = \frac{1}{6}q(q-1)(q-2)$  terms of the form  $(-1)^{x_{1}}(-1)^{y_{2}}(-1)^{y_{3}}$  with a sum  $-\frac{1}{6}q(q-1)(q-2)$ .

Hence 
$$S = \frac{1}{6}p(p-1)(p-2) - \frac{1}{2}pq(p-1) + \frac{1}{2}pq(q-1) - \frac{1}{6}q(q-1)(q-2)$$

$$= \frac{1}{6}\left\{ (p^3 - q^3) - 3(p^2 - q^2) + 2(p-q) \right\} - \frac{1}{2}pq(p-q)$$

$$= \frac{1}{6}(p-q)\left\{ (p^2 + pq + q^2) - 3(p+q) + 2 - 3pq \right\}$$

$$= \frac{1}{6}(p-q)\left\{ (p^2 - 2pq + q^2) - 3(p+q) + 2 \right\}$$

$$= \frac{1}{6}(p-q)\left\{ (p-q)^2 - 3(p+q) + 2 \right\}$$