STANDARD FORM AND INDICES YEARS 9 AND 10

- 4x° is equal to: 1
 - Α 1

В

 \mathbf{C} 40

the expression cannot be evaluated unless x is D specified.

- 2ab⁵ means: 2
 - 2 x a x b x b x b x b x b
- 10 x a x b \mathbf{B}

 $2a \times 2b^5$

- 2ab x 2ab x 2 ab x 2ab x 2 ab D
- The basic numeral for 2⁻³ is: 3
 - A -6
- В

- $(2a^3)^4$ is equal to:
 - 8a12
- В 2a12
- 16a12 \mathbf{C}
- \mathbf{D} 212a12
- 540 000 000, when expressed in standard form, is equal to: 5
 - 5.4×10^7 Α

В

 54×10^7

- 5.4×10^8 5.4×10^{-8} D
- ab⁻⁵c³ is equal to:
 - A $\frac{1}{ab^5c^3}$ B $\frac{b^5}{ac^3}$ C $\frac{c^3}{ab^5}$

- The basic numeral for 2.33×10^{-4} is: 7
- В 23 300
- \mathbf{C} 0.000 023 3
- D 0.000 233
- 8 $\frac{a^4}{3b^{-2}}$ is equal to:
 - $A \qquad \frac{a^4b^2}{3} \qquad \qquad B \qquad \frac{3b^2}{a^4}$
- $C = \frac{ab^6}{3}$
- $3a^4b^2$ \mathbf{D}

- When expressed with positive indices, $\frac{a^6b^7}{a^3h^{-7}}$ is equal to:
- В
- $C a^2b^{14}$
- a^3b^{14}

- A a^2 (4a⁻⁶)⁻² is equal to:
 - A -8a¹²
- B $\frac{a^{12}}{16}$
- $C \frac{8}{8}$
- D

- $\sqrt{x^{-16}}$ is equal to:

 - A $\frac{1}{r^4}$ B $\frac{1}{r^8}$
- $C -x^4$
- -x⁸ D

- The basic numeral for $9^{\frac{1}{2}}$ is:
 - 4 1/2
- В
- $C = \frac{1}{81}$
- D -3

- m⁻²n⁷p⁴ x m²n⁻⁹p is equal to:
 - $A = \frac{p^5}{n^2} \qquad B = \frac{p^4}{n^2}$
- $C = \frac{mp^5}{n^2} \qquad \qquad D = \frac{mp^4}{n^2}$
- When expressed in simplest form with positive indices, $\frac{a^5}{b^4} \div \frac{b^4}{a^3}$ is:
- $C = \frac{a^8}{h^8}$

- 15 $\frac{30a^6bc^4}{6a^6h^2c^8}$ is equal to:
 - $A = \frac{24a}{bc^4} \qquad B = \frac{24}{bc^2} \qquad C = \frac{5}{bc^2}$

- 16 0.000 010 2 written in standard form is:
 - 1.02×10^{-5} 1.02×10^{5}
- B 1.02 x 10⁻⁴ D 1.2 x 10⁻⁵

- If a spacecraft travelled at 2 x 10^4 kph from the Earth to the Moon, which is a distance of 4 x 10^5 km, the time it would take is:

107

- A 20 hours
- В 80 hours
- C 6×10^9 hours D 8×10^9 hours

- $\frac{9 \times 10^{24} \times 6 \times 10^{-12}}{12 \times 10^{10}}$ is equal to:
 - A 3×10^2

 4.5×10^{2} В

C 3×10^{22}

- 4×10^{22} D
- $\sqrt{2^{-6}}$ is equal to:
 - 1-6

1-3 В

 \mathbf{C}

- D You can't find the square root of a negative number.
- $125^{\frac{2}{3}}$ is equal to: 20
 - 25 A
- B $83\frac{1}{3}$ C $\frac{1}{125}$
- 10

THE NEXT 2 QUESTIONS REFER TO THE FOLLOWING INFORMATION.

The diameter of a red blood cell is about 8 x 10⁻⁵cm.

- If an artery could accommodate about 4 000 of these cells across its width, its diameter 21 would be approximately.
 - 0.000 02 cm Α
- 0.005 cm В

 \mathbf{C} 0.02 cm

- D 0.32 cm
- The number of red blood cells which will fit into a line exactly 1 metre long is: 22
 - 1.25×10^{-4} Α

B 1.25×10^8

 1.25^{6} \mathbf{C}

- D 1.25×10^6
- The basic numeral for $2^{-2} + 3^{-1}$ is: 23
 - A $\frac{1}{125}$ B $\frac{1}{7}$ C $\frac{7}{12}$

- D -7

- The basic numeral for $\frac{(2^{x+1})^4}{4^{2x}}$ is: 24
 - Α

В

C

D Unable to be determined unless the value of x is known.

- 25 The basic numeral for $\frac{3a^{-7} \times 2a^{-3} \times a^7}{12a^7 \times (a^{-5})^2}$ is:
 - A $\frac{5}{12}$

 $B = \frac{1}{2}$

C -7

- D Unable to be determined unless the value of a is known.
- The average distance between the Sun and the Earth is 1.5 x 10⁸ km. The distance around the Earth's Equator is 40 000 km. A journey from the Earth to the Sun would be equivalent to travelling around the Equator approximately:
 - A 400 times

- B 4 000 times
- C 25 000 times
- D 6×10^{12} times
- 27 The basic numeral for $\frac{(-10)^5 \times -10^{20}}{10^{-20} \times (-10^9)^5}$ is:
 - A $\frac{1}{9}$
 - B 1
 - C -1
- 28 The only perfect square in the following list is:
 - A 4x
- $\mathbf{B} \quad \mathbf{x}^9$
- $C x^6$
- D x^{1/2}

- 29 $2^9 \times 5^9$ is equal to:
 - A 10^9
- B 10¹⁸
- $C 7^{18}$
- $\mathbf{D} = 7^9$

- 30 If $2^{x-5} = 32$, then x equals:
 - A 11
- **B** 10
- C 21
- D 2¹⁰

ANSWERS TO STANDARD FORM AND INDICES

1 B	2 A	3 C	4 C	5 B	6 D
7 D	8 A	200000000000000000000000000000000000000	10 B	11 B	12 B
13 A	14 C	15 D	16 A	17 A	18 B
19 C	20 A	21 D	22 D	23 C	24 C
25 B	26 B	27 C	28 C	29 A	30 B