Inequalities and regions

Subtract 2x from both sides.

remembering to reverse the sign.

Multiply both sides by "1,

A statement involving $>, \ge, < \text{or} \le \text{ is called an inequality.}$

Equations remain true if 'you do the same to both sides'.

The rule is not so simple for inequalities:

- the inequality remains true if we add the same number to both sides or subtract the same number;
- it also remains true if we multiply or divide by a positive number;
- · however, if we multiply or divide by a negative number, the direction of the inequality reverses.

Check that you can follow the solutions of these inequalities.

x > 8 + 2xx > 8x < -8

Add 18 to both sides. Divide both sides by 2. There are positive and

 $2x^2 \le 18$ $x^2 \leq 9$ $-3 \le x \le 3$

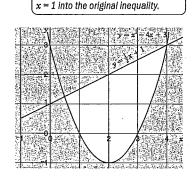
Check by substituting, say, x = -3 and

➤ page 22

 $2x^2 - 18 \le 0$

Solving linear equations

negative solutions.


Check by substituting, say, x = -9 into both sides of the original inequality.

Inequalities can be shown on a graph. Check that the coordinates of all points above the line $y - \frac{1}{2}x = 1$ satisfy the inequality $y - \frac{1}{2}x > 1$ and points below the line satisfy $y - \frac{1}{2}x < 1$.

The line $y - \frac{1}{2}x = 1$ is the boundary between the two regions $y - \frac{1}{2}x > 1$ and $y - \frac{1}{2}x < 1$.

From the graph it is possible to see that points in the untinted region satisfy both the inequalities $y - \frac{1}{2}x < 1$ and $y > x^2 - 4x + 3$.

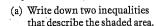
It is usually best to shade out the regions you do not want.

- 1 Solve these inequalities.
 - (a) 5x + 17 > 7
- (b) x + 7 < 3x + 2
- (c) 3-2y<11
- (d) $\frac{1}{2}(2-5n) \le 11$

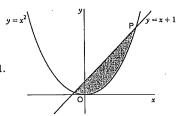
- (e) $5 + 3x > \frac{x}{2}$
- (f) 10 < 2 4x
- (g) $5(a-2)-8a \ge 0$
- (h) $3x^2 12 > 0$
- 2 On graph paper, draw x- and y-axes, and mark each axis from 3 to 5 using a scale of 2 centimetres to represent 1 unit. On your diagram draw and label clearly the region which satisfies all of these inequalities.

$$y \ge -2$$

$$y \le 3x + 1$$
$$2x + y \le 5$$


$$2x + y \le 5$$

MEG


- 3 The values of x satisfy the inequality $3x + 1 \le 27 \le 5x 6$.
 - (a) (i) Find the largest possible value of x.
 - (ii) Find the smallest possible value of x.
 - (b) Write down all the possible integer values of x.

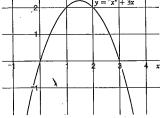
MEG

- 4 (a) What can you say about x if 13-6x is less than 25?
 - (b) If $y z \le 12$ and $z \le 7$, what is the greatest value of y?
- 5 The diagram shows the graphs of y = x + 1 and $y = x^2$.

(b) At the point P, explain why $x^2 = x + 1$.

MEG (SMP)

6 Use this graph of $y = x^2 + 3x$ to help you decide which of these statements are correct.


(a)
$$-x^2 + 3x \le 0$$
 for $0 < x < 3$

(b)
$$-x^2 + 3x \ge 0$$
 for $0 \le x \le 3$

(c)
$$-x^2 + 3x > 0$$
 for $0 \le x \le 3$

(d)
$$-x^2 + 3x > 2$$
 for $1 \le x \le 2$

(e)
$$-x^2 + 3x \ge 2$$
 for $1 \le x \le 2$

- Nita has two types of fish in a tank: loach and guppy. There are x loach and y guppy.
 - (a) Nita has at least 10 guppy. Write this information as an inequality.
 - (b) The tank will accommodate up to 30 fish. Write this information as an inequality.

Draw a grid with values of x and y from 0 to 30 using a scale of 2 cm to 5 units.

(c) On the grid indicate the region which satisfies both these inequalities.

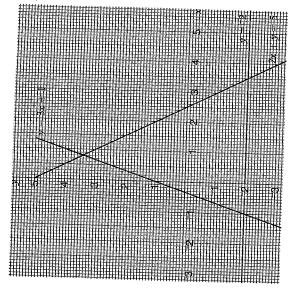
Nita has three times as many guppy as loach.

- (d) Draw a line on the grid to show this information.
- (e) How many of each sort of fish could Nita have? Circle the points on the grid which show all the possible answers.

MEG/ULEAC (SMP)

Inequalities and regions (page 26)

(a) x > -2


(b) You need to collect terms in x on one side of the equation. Here are two alternative methods.

$$x + 7 < 3x + 2$$
 or $3x + 2 > x + 7$
 $-2x < -5$ $2x > 5$
 $x > \frac{5}{2}$ $x > \frac{5}{2}$

(d) $n \ge -4$ (c) y > -4

(c)
$$y > -4$$
 (d) $n \ge -4$ (e) $x > -2$
(f) $x < -2$ (g) $a \le 3\frac{1}{3}$ (h) $x < -2$ or $x > 2$

The unshaded region satisfies all the inequalities, including the lines forming the sides of the triangle. 7

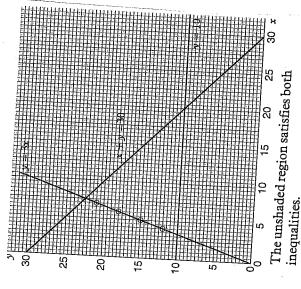
(a) Start by solving the two inequalities $5x - 6 \ge 27$. $x \ge 6\frac{3}{5}.$ and and $x \leq \frac{82}{33}$ So 3

- (i) The largest value of x is $8\frac{2}{3}$.
- (ii) The smallest value of x is $6\frac{3}{5}$.
- (b) The integer values of x are 7 and 8.

(a) Solving the inequality 13-6x < 25 gives 4

$$(b) y = 19$$

y has its maximum value when z is a maximum (that is 7) and y-z=12.


5 (a)
$$y < x + 1$$
 or $y \le x + 1$ and $y > x^2$ or $y \ge x^2$
(b) At Photh

(b) At P both
$$y = x + 1$$
 and $y = x^2$, so $x^2 = x + 1$.

(c) False

7 (a)
$$y \ge 10$$
 or $y > 9$

$$(b) x + y \le 30 \text{ or } x + y < 31$$

(d) The line with equation y=3x; see the graph.

(e) There are four possible answers: and (6, 18)(5, 15),

More help or practice

Regions with two boundaries ➤ Book Y5 pages 125 to 126 Inequalities and regions - Book Y5 pages 121 to 124 Solving inequalities - Book Y5 pages 92 to 97