

KAMBALA

EXTENSION 2 MATHEMATICS

HSC ASSESSMENT TASK #1

Complex No's

NOVEMBER 2004

Time Allowed: 50 minutes

INSTRUCTIONS

- This task contains 3 questions of 12 marks each. Marks for each part question are shown.
- Answer all questions on the writing paper provided.
- Start each question on a new page.
- Calculators may be used.
- Show all necessary working.
- Marks may be deducted for careless or badly arranged work.

Question 1 Start a new page	Marks
(a) Simplify, leaving your answer in the form $a+ib$:	
(i) $(2+3i)(1-2i)$	1
$\frac{\sqrt{3}-i}{\sqrt{2}-i}$	2
(b) Write $1+i\sqrt{3}$ in mod-arg form	2
(ii) Hence find the two square roots of $1+i\sqrt{3}$	3
If $z_1 = 4i$, $z_2 = 2\sqrt{3} - 2i$ and $z_3 = -2\sqrt{3} - 2i$ represent A, B and C respectively, show that \triangle ABC is equilateral	4

Question 2	Start a new page	Marks
(a)	(i) Find $(1-i)^5$ in mod-arg form	2
	Using De Moivres Theorem or otherwise find the values of n for which $(1-i)^n$ is purely real.	2
	For what values of a and b is $z=1$ a solution to the equation $2iz^2 + (ia+1)z - (i+3b) = 0$?	3
Kambal	a Extension 2 HSC Task #1 Nov 2	ember 2004

Solve the equation $z^5 - i = 0$, giving the roots z_1, z_2, z_3, z_4, z_5 in mod-arg form with principal arguments.

3

Show that the perimeter of the pentagon $z_1z_2z_3z_4z_5$ formed by the roots in the Argand plane is given by

$$P = 5\sqrt{2\left(1 - \cos\frac{2\pi}{5}\right)}$$

Question 3

Start a new page

Marks

Sketch the region on the Argand plane where both

$$1 \le |z - i| \le 2$$
 and $\frac{\pi}{3} < \arg z < \frac{2\pi}{3}$ apply

3

(d)

By looking at the values of i^n for n = 1, 2, 3, 4, ... or otherwise, find the possible values of the series $S_n = 1 + i + i^2 + i^3 + i^4 + ... + i^n$

3

(c) z is the comp

z is the complex number z = x + iy

2

Find the equation of the curve for which $Im(z^2) = 4$ and sketch on a suitably labelled Argand plane

2

Show that the locus given by $Re(z^2) = 0$ is the pair of intersecting lines $y = \pm x$

The region R in the Argand plane consists of all points which satisfy both $0 \le \text{Im}(z^2) \le 4$ and $\text{Re}(z^2) \le 0$. Complete a sketch of the region R on your answer for part (i)

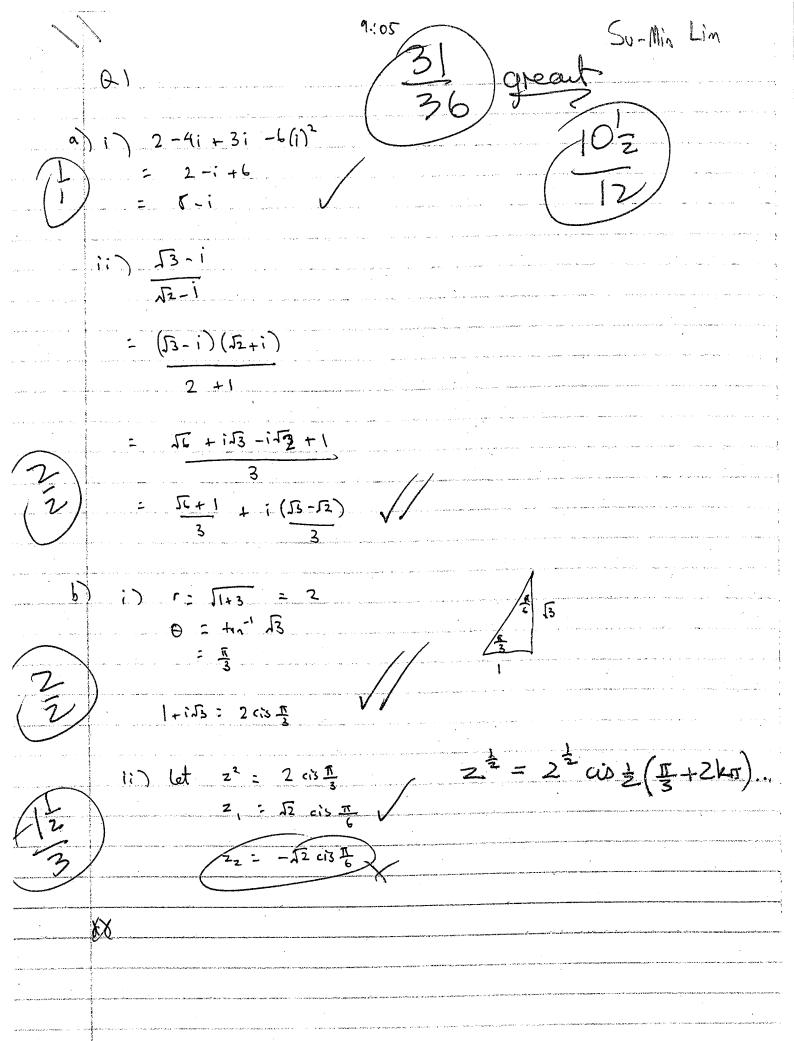
2

(0,0)

End of task

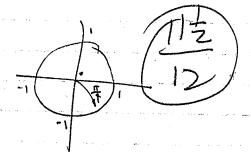
Extension 2 HSC Task #1

November 2004



(23 -- 2 - 32 B AB : |2,-2| AC = |2,-2| $= |4i - 2\sqrt{3} + 2i| = |4i + 2\sqrt{3} + 2i|$ $\frac{1}{2} \left[-2.55 + 6i \right] = \left[6i + 2.53 \right]$ = 136 +12 12+36 = 148 = 153 J78 = 4JB = 1253-2; +253+2; : 1453 1 = \int (1.13)^2 - + 453 AB = A(= BC . ABC is equilateral as all sides

a) 1)
$$1-i = \sqrt{1+1} \text{ cis } (+\pi^{-1}-1)$$
= $\sqrt{2} \text{ cis } (-\frac{\pi}{4})$



 $\frac{2}{2} \left(\frac{1-i}{5} \right)^{5} = (\sqrt{5})^{5} = (\sqrt{5})^{5} = \frac{7}{4} + \sqrt{5} = \frac{377}{4}$ is more polite.

11) (+1) 5 - 4 52 eis 3 n = 452 (100 3 n + 1 sin 3 n)

for (IFi) to be real, 15in 35

 $\begin{pmatrix} 3 \\ 6 \end{pmatrix}$

$$(1+i)^{n} : (I2)^{n} cis \left(-\frac{n\pi}{4}\right) = (I2)^{n} \left(cos \left(-\frac{n\pi}{4}\right) + isin \left(-\frac{n\pi}{4}\right)\right)$$

$$(1+i)^{n} + he red, sin \left(-\frac{n\pi}{4}\right) must be apply 0$$

n=4, ±8, ±12 ; 16... => multiple .f 4 of O coare fule....

b) 7:4 + fin +1 -1 -5 b =0

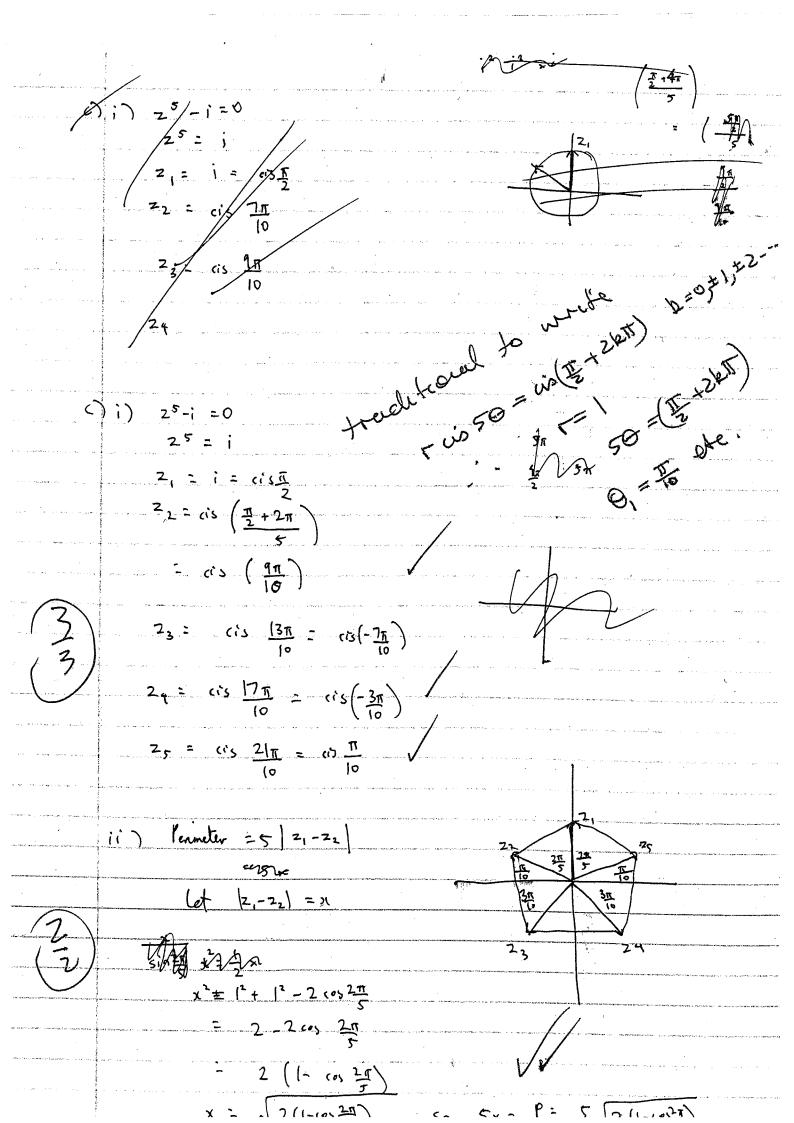
(12) - 39 = 10 141+14-88 = 10

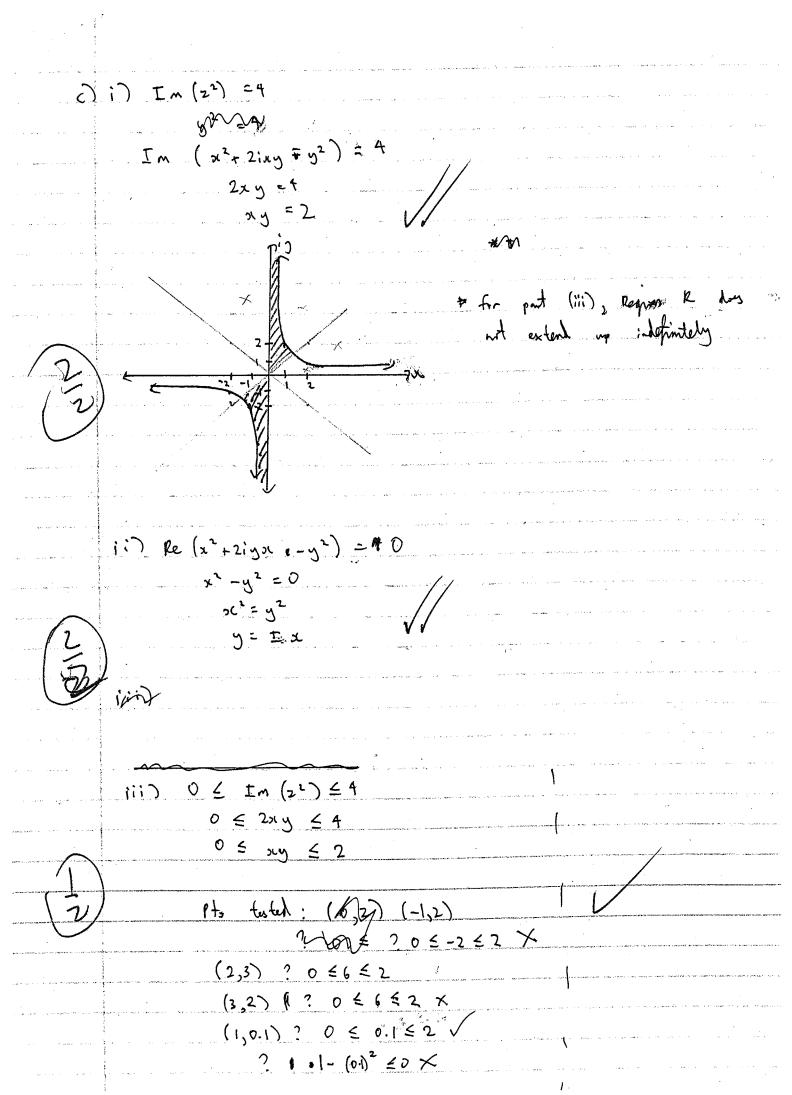
Equating Re:/Im...

1+1=0

-36+1 20

1 = 34





legion with: $0 \le 2xy \le 4$ $0 \le xy \le 2$ $x^2 - y^2 \le 0$

pt: (0.1,1)? $0 \le 0.1 \le 2$ $(0.1)^2 - 1^2 \le 0$

-o.7, 2

0 ≤