

## **KAMBALA**

## YEAR 11 MATHEMATICS

## Preliminary Assessment Task 3

July 2010

Time allowed: 45 minutes

## Trigonometric Ratios and Parabola, including Locus

• There are two parts to this task.

• The mark value for each part of each question is indicated next to that part.

• Answer each question in the spaces provided on the question paper. For multiple-choice questions circle the answer(s) of your choice.

## PART A - Trigonometry

In Question 1 circle the answer (or answers) of your choice.

1. The exact value of cos 120° is:

1

- (A)  $\frac{-\sqrt{3}}{2}$
- (B)  $\frac{-1}{2}$
- $\frac{1}{2}$
- (D)  $\frac{\sqrt{3}}{2}$

2. Consider the statement:  $\sin(90^{\circ} - \theta) = \sin \theta$ .

1

Is the statement: sometimes true; always true; never true?

Give a reason for your answer or examples to justify your answer.

- 3. Given  $\sin A < 0$  and  $\cos A < 0$ .
  - (i) In what quadrant of the unit circle is the angle A?

1

(ii) What is the range of possible values for the size of angle A?

1

(iii) Is cot A positive or negative?

1

4. Find all values of x in the domain  $0^{\circ} \le x \le 360^{\circ}$ , for which  $\sin^2 x = \frac{3}{4}$ .

3

2

2

2

- 5. Two students leave Kambala, K, heading for their homes, A and B respectively.
  - (i) Using the diagram fill in the missing information in the sentences below.

N ANot to scale K  $100^{\circ}$  3.4 km

One student walks 2 kilometres on a bearing of \_\_\_\_\_. The other walks for 3.4 kilometres on a bearing of \_\_\_\_.

(ii) Find the distance between the students' homes. Answer to 1 decimal place.

Consider the graph of  $y = \sin x$  drawn below. On the same graph draw in the line  $y = \frac{1}{2}$  and state how many solutions exist for the equation  $\sin x = \frac{1}{2}$  in the domain  $0^{\circ} \le x \le 360^{\circ}$ .



7. Consider the triangle below.



Not to scale

(i) Is  $\theta = 90^{\circ}$  possible? Justify your answer.

2

(ii) If  $\theta = 68^{\circ}$ , find  $\alpha$  to the nearest minute.

2

## PART B - Locus

In Question 1 circle the answer (or answers) of your choice.

The locus of a point that moves so that it is always 3 units from the x-axis is: 1.

12

$$(A)$$
  $x = 3$ 

(B) 
$$y = 3$$

(B) 
$$y = 3$$
 (C)  $x = -3$ 

(D) 
$$y = -3$$

Sketch the locus of all points that are more than 2 units from the line x = 1. 2.

2



The equation of a locus is  $x^2 + 6x + y^2 - 4y + 5 = 0$ . Elizabeth described the locus 3. as a circle with centre (-3, 2) and radius  $2\sqrt{2}$ . Is she correct? Justify your answer. 2

4. For the information below decide whether the locus described represents a line, a parabola or a circle. (You do not have to find the locus.)

The locus of a point P(x, y) that moves so that it is:

- (i) equidistant from A(4,-2) and B(-3,5) is a \_\_\_\_\_\_\_.
- (iii) equidistant from a fixed point and a fixed line is a \_\_\_\_\_\_\_1
- 5. On the axes below, draw in the locus of a point that moves so that it is equidistant from x + y = -2 and x + y = 6 and state the equation of this locus. Clearly label any intercepts.



6. A parabola has equation  $x^2 = 8y$ . Draw a sketch of the parabola, clearly indicating 2 its vertex, focus and directrix.

7. A parabola has focus (-1, 4) and focal length 3 units.

Given the above information, are the following possible? For those which are possible, hence, write down the equation of the parabola formed.

(i) 2

(ii) Axis of symmetry y = 4 and vertex (2, 4).

**End of Assessment** 

Class Teacher (circle): DL (GP) CG MC



## KAMBALA

## YEAR 11 MATHEMATICS

# Preliminary Assessment Task 3

July 2010

Time allowed: 45 minutes



Trigonometric Ratios and Parabola, including Locus

Kunk:

- There are two parts to this task.
- The mark value for each part of each question is indicated next to that part
- Answer each question in the spaces provided on the question paper. For multiple-choice questions circle the answer(s) of your choice.

Year 11 Mathematics Task 3

July 2010

## PART A - Trigonometry

In Question 1 circle the answer (or answers) of your choice

- 1. The exact value of cos 120° is:
- $(A) \quad \frac{-\sqrt{3}}{2}$
- $\begin{array}{ccc} \text{(B)} & \frac{-1}{2} & / \\ \end{array}$
- 2
- (D)  $\frac{\sqrt{3}}{2}$
- 2. Consider the statement:  $\sin(90^{\circ} \theta) = \sin \theta$ .

  Sin(90-45) = Sin 45

  Is the statement: sometimes true; always true; never true?

Give a reason for your answer or examples to justify your answer.

- Given  $\sin A < 0$  and  $\cos A < 0$
- In what quadrant of the unit circle is the angle A?
- (ii) What is the range of possible values for the size of angle A? 180 < A < 270

Is cot A positive or negative?

poothive

 $\Xi$ 

4. Find all values of x in the domain  $0^{\circ} \le x \le 360^{\circ}$ , for which  $\sin^2 x = \frac{3}{4}$ 

$$\sin^2 x = \frac{3}{4}$$
 $\sin^2 x = \frac{4}{12}$ 
 $\sin^2 x = \frac{3}{120}$ 
 $\sin^2 x = \frac{3}{120}$ 

(i) Using the diagram fill in the missing information in the sentences below.



One student walks 2 kilometres on a bearing of \_032\_. for 3.4 kilometres on a bearing of 13.2°

- Find the distance between the students' homes. Answer to 1 decimal place. AB2=(2) + (3.4)2-2(2)(3.4) x cos100 = 4.2 km (1dp.) AR = Jans  $\Xi$
- line  $y = \frac{1}{2}$  and state how many solutions exist for the equation  $\sin x = \frac{1}{2}$  in the Consider the graph of  $y = \sin x$  drawn below. On the same graph draw in the domain  $0^{\circ} \le x \le 360^{\circ}$ .



Year 11 Mathematics Task 3

Consider the triangle below.

Not to scale

yes 0=90° is possible as there and the sides when used in are no other defined angles produce a valid answer Pythagoras, theorum still the unknown side. Is  $\theta = 90^{\circ}$  possible? Justify your answer.  $\odot$ 

If  $\theta = 68^{\circ}$ , find  $\alpha$  to the nearest minute. Sin 68 \_ Sin ACB Ξ.

= 67°57) (nearest minute) 89 - 1.80 - 4408) - - 68

PART B - Locus
In Question I circle the answer (or answers) of your choice.

The locus of a point that moves so that it is always 3 units from the x-axis is:

$$(A) \quad x = 3$$

(C). 
$$x = -3$$
. (T



۱ ۲

Sketch the locus of all points that are more than 2 units from the line x = 1.



as a circle with centre (-3, 2) and radius  $2\sqrt{2}$ . Is she correct? Justify your answer The equation of a locus is  $x^2 + 6x + y^2 - 4y + 5 = 0$ . Elizabeth described the locus

$$x^{2}+6x+4^{2}-4y+5=0$$
 $x^{2}+6x+9+y^{2}-4y+4=-5+9+4$ 
 $(x+3)^{2}+(y-2)^{2}=8$ 

Centre (-3,2) Radius: 18 = 212

complete the square pro equation of a circle with The is correct as when C (-3,2) 5000

> a parabola or a circle. (You do not have to find the locus.) For the information below decide whether the locus described represents a line,

The locus of a point P(x, y) that moves so that it is:

- equidistant from A(4,-2) and B(-3,5) is a A(4,-2)
- always 5 units from A(2,-1) is a <u>Circle</u>
- equidistant from a fixed point and a fixed line is a parabole
- Ņ On the axes below, draw in the locus of a point that moves so that it is equidistant any intercepts. from x + y = -2 and x + y = 6 and state the equation of this locus. Clearly label



B: x+y-6=0

PA-PB

PA= 1x+y+21

Cone () 
$$PB = |x + y - b|$$
  
 $x + y + 2 = x + y - b$ 

**リニーエ+2** 

July 2010

A parabola has equation  $x^2 = 8y$ . Draw a sketch of the parabola, clearly indicating (0'0)/ its vertex, focus and directrix. S(0,2) D: y=-29.

focal length: 49=8 7-15

A parabola has focus (-1, 4) and focal length 3 units.

Given the above information, are the following possible? For those which are possible, hence, write down the equation of the parabola formed.

A vertex of (-1,1) and equation of directrix y=-2. S(-1, H) focal length: S(+'1-)S Θ

Form:  $(x-h)^2 = 4\alpha(y-k)$  $(x+1)^2 = 12(y-1)$ 





 $\Xi$ 

End of Assessment