

# KAMBALA

# **Mathematics Extension 1**

## **HSC Assessment Task 1**

### February 2008

## Calculus, Harder Curve Sketching and Further Trigonometry

### Time Allowed: 45 minutes working time

#### **Outcomes Assessed**

H5 applies appropriate techniques from the study of calculus and trigonometry

16 uses the derivative to determine the features of the graph of a function

H7 uses the features of a graph to deduce information about the derivative

H8 uses techniques of integration to calculate areas and volumes

PE6 makes comprehensive use of mathematical language, diagrams and notation for communicating in a wide variety of situations

HE7 evaluates mathematical solutions to problems and communicates them in an appropriate form

#### INSTRUCTIONS

- This examination contains 2 questions of 15 marks each. Marks for each question are shown.
- · Answer all questions on the writing paper provided. Start each question on a new page.
- · Calculators may be used.
- · Show all necessary working.
- · Marks may be deducted for careless or badly arranged work.
- More marks will be awarded for questions involving higher order thinking.

Mathematics Extension 1 HSC Task#1 2008

Question 1 (15 Marks)

(Start a new page.)

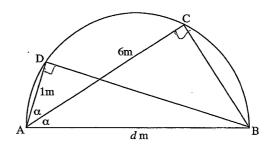
Marks

3

2

a) Find the obtuse angle between the lines whose equations are:

y = x - 2y = -3x + 5


b) By writing  $\sin(-15^\circ)$  in the form  $\sin(A-B)$ , find the exact value of  $\sin(-15^\circ)$ .

(c) If  $t = \tan \frac{\theta}{2}$ , simplify  $\frac{1 - \cos \theta}{1 + \cos \theta}$  and write in simplest form in terms of t.

(d) (i) Using the expansion for  $cos(\alpha + \beta)$ , prove

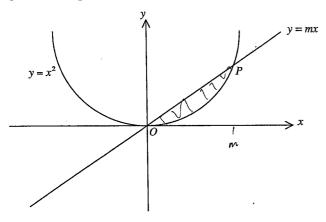
 $\cos 2\alpha = 2\cos^2 \alpha - 1$ 

ii) The figure below shows a semicircle with diameter d metres. 3 AC = 6 metres, AD = 1 metre and  $\angle BAC = \angle CAD = \alpha$ .  $\angle ADB = \angle ACB = 90^{\circ}$ .



Write expressions for  $\cos \alpha$  and  $\cos 2\alpha$  and, using part (i), find the value(s) of d.

Prove the identity  $\frac{\cos x - \cos 2x}{\sin 2x + \sin x} = \csc x - \cot x$ 


3

(Start a new page.)

Marks

Integrate  $\int 2x(1-2x)^4 dx$  using the substitution u=1-2x.

- The diagram shows the curve  $y = x^2$  and the line y = mx, where m > 0, intersecting at the origin, O, and the point, P.



Find the co-ordinates of P.

- 2
- The region enclosed by the interval OP and the arc OP is rotated about the x-axis.

Show that the volume of the solid of revolution thus formed is  $\frac{\pi m^5}{30}$  cubic units.

Question 2 is continued next page

Question 2 continued

Consider the curve y

Mathematics Extension 1 HSC Task#1 2008

Find all intercepts and the equation of the vertical intercepts.

3 Find and determine the nature of the stationary points.

2

1

Hence, or otherwise, find the equation(s) of any non-vertical asymptotes.

Sketch the curve showing all of the above features (you may assume there are no points of inflexion).

End of Assessment Task



(G) 4-2-2 (et 0 = obnse L & += acute L. m2 = -3. -: += 63° 26' (n. ') , . O-180-63°26? = 116° 34'. (n. 2) no! (to neasest minute) Son (-15) = Sin (30-45) = Sin30 cos 45 - Cos308in 45 () 1-60 0 1- (1-t2)

(d) (i) los (d+ f) = los d 65 p - 8 nd 55 p. PIP: Co 2 d = 2 cos ~ x - 1 LHS= lost cop - lod lod - sidsid (10 2 d - (1-Cos 2 d). Cos 2 d = 2 cos d -1  $\frac{1}{d} = \frac{72}{R} - 1 \qquad \qquad 0^2 = \frac{72}{4} - 0^2.$ 

-- d-8m

(e) 60 x - Cost = cosec x - cot PIP US 2 - 605 2 2 = tan - 5 mm = cox (162cox)+1 7 Sin u - Sinne LHS= COS 2-2002 x+1 gina (200x+1) = 60x -2002 x + 6052 +1 Shx (2005 x+1) 5 ( PUSAFI) ( 605 x -1)

(a) \ \int 2 \ta \ (1-2 x) 4 dx. n=1-22. doul = 1/ 1-u (1 dy) 4 dy  $du = -2 \cdot dx$ .  $-du = 2 \cdot du.$ 2n=1-u. = - f ut - us du. = -1 fu4-u5 du  $\frac{1}{2} - \frac{1}{2} \left( \frac{u^2}{5} - \frac{u^6}{6} \right) + C$  $\frac{1}{5} - \frac{1}{2} \left( \frac{(1-2\pi)^5}{5} - \frac{(1-2\pi)^6}{7} \right) + C$  $= - (1-2\pi)^5 + (1-2\pi)^6 + 1$ (6) (i) y zmx & y z " n(n-m)=0. (a) n=m, y=m".  $(i') V = \pi \int_{0}^{m} (mx)^{2} - (n^{2})^{2} dx.$ = T 5 m m 2 2 2 2 d 2 2 2 2 m T.  $\frac{\sqrt{3}}{\sqrt{3}} = \pi \int_{0}^{\pi} \left( \frac{m^{2}n^{3} - n^{5}}{3} \right)^{n}$  $= \pi \left( \frac{m^2 m^3 - m^5}{3} \right) = \left( \frac{m^5 - m^5}{3} \right) \pi = \left( \frac{5m^5 - 3m^5}{18} \right)$ 

 $y=n^2-3$ (1) when n=0, y=-3 when  $y^{-0}$ ,  $0 = n^{2} \xi - 3$ -? interest are  $(0,-\frac{3}{2})$  d  $(\sqrt{3},0)$  l  $(-\sqrt{3},0)$  $-(-i) \quad y = \frac{n^2 - 3}{n^2}$ y' = u'v-v'4  $= 2n \left(n+2\right) - 1\left(n^2-3\right)$ = 22 + 42 - 22 +3 22+4x+3 =0. - when for si

(ii) Et (21-2) + 1 (21+2) LHS=(n-2)(n+2)+)