

KAMBALA

Mathematics Extension 2

HSC Assessment Task 1

November 2006

Time Allowed: 1 hour

Outcomes Assessed

- E2 chooses appropriate strategies to construct arguments and proofs in both concrete and abstract settings
- E3 uses the relationship between algebraic and geometric representations of complex numbers
- combines the ideas of algebra and calculus to determine the important features of the graphs of a wide variety of functions
- E9 communicates abstract ideas and relationships using appropriate notation and logical argument

INSTRUCTIONS

- This task contains 3 questions of 12 marks each. Marks for each part question are shown.
- · Answer all questions on the writing paper provided. Start each question on a new page.
- · Calculators may be used.
- Show all necessary working.
- Marks may be deducted for careless or badly arranged work.

Question 1 (Start a new page.)

12 Marks

1

(a) For the complex number z = 2 - i, express the following in the form x + iy where x and y are real:

(i)
$$\overline{z}$$

(ii)
$$\frac{1}{z}$$

(iii)
$$(1-i)z$$
 2

The triangle POQ above is right-angled at O. The length of OQ is twice that of OP.

2 Given that \overrightarrow{OP} represents the complex number 3+4i, determine the complex number represented by \overrightarrow{OQ} .

(c) Find
$$u$$
 and v , where u and v are real, if $(u-iv)^2 = 5 + 12i$.

(d) By factorising
$$z^3 + 8$$
, or otherwise, find all solutions of $z^3 + 8 = 0$. Express any complex roots in the form $r(\cos\theta + i\sin\theta)$ where r is real and θ is in radians.

Question 2

(Start a new page.)

12 Marks

(a) Let f(x) = x(x+2). The graph of y = f(x) is drawn below.

On separate diagrams, and without using calculus, sketch the following graphs. Indicate clearly any asymptotes and intercepts with the axes.

$$(i) y = f(x) + 2$$

$$y = f(x) + 2 \tag{1}$$

(ii)
$$y = |f(x)|$$

(iii)
$$y = \frac{1}{f(x)}$$

(b) Let
$$f(x) = \frac{x^2}{(x+2)(x-2)}$$
 for $x \neq 0$

(i) Show that
$$f(x) = 1 + \frac{4}{x^2 - 4}$$

- Find the equations of all asymptotes to y = f(x).
- Using part (i) find any stationary points on the curve and determine their nature. 2
- Sketch the curve y = f(x). Clearly indicate any asymptotes and intercepts. 2

Ouestion 3

(Start a new page.)

12 Marks

1

(a) Write
$$z = 5(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6})$$
 in Cartesian form.

- Given z is a complex number such that $5z + \overline{z} = 12 + 8i$, find z. Let z = x + iy where x and y are real.
- Sketch |z-2|=1, and describe the locus geometrically.
 - Considering z as a point on the locus indicate on your sketch the points that give the greatest values of |z| and of $\arg(z)$. Hence find the greatest value of |z| and $\arg(z)$.
- On the same diagram sketch the graphs of y = |x+2| and $y = x^2$.
 - Show that the graphs intersect at x = -1 and x = 2. Hence solve $|x+2| > x^2$ for all x.
 - (iii) For what values of b will $|x+2| = x^2 + b$ have no solution?

	thematics Extension 2 Assessn		November 2000		
Question	Solutions	Marks	Marking Criteria		
1.(a)	z=2-i				
	(1) = 2 -+ i	,			
	$(ii) \stackrel{?}{z} = \underbrace{1}_{2i} \times \underbrace{2+i}_{2+i}$				
	= 2+i ++1		•		
	= 2+1				
,	(iii) (1-i72				
	=(1-i)(2-i)	,			
	= 2 - 3 i - 4]			
	= 1-32				
(b)	00 = 200 मू × ठारे				
	= ai x (3+4c)		•		
	= 62 + 862				
(c)	= -8+6i (U-iv)2 = 5+12;				
	$(u^2 \cdot v^2) - (2uv)i = 5 + 12i$				
	$u^{2}-v^{2} = 5$ $2uv = -12$				
	NV = -6				
	V = -6				

rear 12 Ma	thematics Extension 2 Assessmen	tics Extension 2 Assessment 1 No		
Question	Solutions	Marks	Marking Criteria	
1 (c)	W -542 +36 =0			
cHd	$(u^2 - 9)(u^2 + 4) = 0$			
	$u^2 = q$ $u^2 = -4$			
	u= +3 no sam.			
	u=3, V = -2			
•	u=3, v= 2		•	
(d) ·	Z3 = -8			
	t3 = 8 cio 7			
	= 8 cis(T + 2k7)			
	$z = a cis(zk+i)\pi$, where k is an integer			
	where k is an integer			
	$K=0$: $\frac{1}{2}=2 \operatorname{cis} \frac{\pi}{3}$			
	$k = 1 : 2 = 2 \cos \pi = -2$.		· ·	
	L= 2 = 2 in 5T			
	OR .			
	23+8=(2+2)(22-22+4)		•	
	$2=-2$, $\frac{2\pm\sqrt{-12}}{2}$			
	25-2,1+Bi			
	2=2 cis \(\frac{1}{3} \), 2 cis \(\tau \)			
	$2 cis \frac{5\pi}{3}$			

Qn	Solutions	Marks	Comments+Criteria	ı İ	Qn	
2	(a) ((n+2)				2 ctol	(b) Ph
	y= x(x-2)	1				(i) +(
	(i) 2 (-1,1) 2					(i) lin
	$(ii) \qquad y = f(x) $					$i \cdot y = 2$ ao_{ii} $(iii) f(iii)$
	(iii) (:3,3) $y = x^{2} + 2x$ $(1,5)$ $(1,5)$	2				f"(n)
	-3 -2 -1-1-1 -1-1	2	,			stat pts

· .

•

Qn	Solutions	Marks	Comments+Criteria
2 ctol	(b) f(n): n2 for x \$0.		
	$(i) f(x) = \frac{x^2}{x^2 - 4}$		
	$\frac{x^2-4+4}{x^2-4}$,
	= 1 + 4 -	1	
	(i) $\lim_{x\to\infty} \left(1 + \frac{4}{x^2 - 4}\right) = 1 + 0$		
	:. y=1 is howandal asymptote.	J	
	x=2 and $x=-2$ are vertical asymptotes. $x=0$	J	
	(iii) $f(x) = 1 + 4(x^2-4)^{-1}$	01	$f'(n) = \frac{\partial x(x^2-y) - \partial x}{(x^2-y)^2}$
	$f'(\pi) = -4(x^2-4)^{-1} \cdot 2\pi$ = $-8\pi(\pi^2-4)^{-1}$		= 2x3-8x-2x3 (x2-4)2
	= -8n (212-4)2	1	
	$f''(x) = \frac{-8(x^2-4)^2 - 2(x^2-4).2x6}{(x^2-4)^2}$	n	$= \frac{-8x}{(x^2-4)}$
	$= \frac{-8(x^{2}-4) + 32x^{2}}{(x^{2}-4)}$ $= \frac{16x^{2}+32}{2x^{2}-4}$ Shat pts at $\frac{-8x}{(a^{2}-1)^{2}}$ = 0	•	
	(a2-132) -bc = 0 >c = 0, y = 0		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

101	IVIARKS	Comments+Criteria
$\frac{2}{4d(0,0)} \cdot \frac{x}{x} - \frac{1}{9} \cdot \frac{8}{9} \cdot \frac{8}{9}$	-	
1 9 9		
i. naso. at (0,0).	1	·
(iv)	£)	
-2 0 2 0 n y=1+ 4 x ² -4		
-1 + 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
t(m) ever	2	

Year 12 Ma	athematics Extension 2 Asse	essment 1	November 26
Question	Solutions	Marks	Marking Criteria
3(a)			
	$= 5(-\frac{\sqrt{3}}{2} + i.\frac{1}{2})$		
•	\$ =-5\frac{3}{2} + \frac{7}{2};		
(b)	52 + 2 = 12 + 8i	1	
	5(x+iy) + (x-iy) = 12+		•
	6x + siy + 21 - iy = 12- 6x + i(4y) = 12+8i	+81	
	6x=12 +y=8		
	$x = 2 \qquad y = 2$ $\therefore z = a + 2c$		
(0)	$\begin{array}{c c} & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & & \\ \hline $		
	locus is a circle centre (2,0) radius 1		
	(ii) Z MADO = 1001		
	org 2 MAX= 0 = +an-1 (1/3) = 17/15		

Qn	Solutions	Marks	Comments+Criteria
		IVIAIRS	Comments+Criteria
ad	(d) (i) y= x+2 and y=x2		
CIE	, hy , a		
	1 4 1		
	-2 · 2		, ,
	ı		
	(ii) y		
	(ii) 12 The		
	X - X - 1 - 2		
	(36 - x)(x -1) - =		
	. ~ % ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
	(x+2) 7 x2		
	(, _ , , , , ,		
	-1 < x < 2		
	(iii) x+2 = x2+15 home no sohns		
	2 3 N		
	~~ Z O		
	$X+2=x^2+6$		
-	x² - n + 6 - 2 = 0		
	0 = 62-4ac		
	= 1 -4.1.(6-2)		
	= 1 - 46+8		
	= 9-46		
	Por no soms 000 12 9-460		

-45 < -9 45 > 9 $6 > \frac{9}{4} = 2\frac{1}{4}$. ie $6 > 2\frac{1}{4}$.

•

ı

•