

2008
HIGHER SCHOOL CERTIFICATE
TRIAL EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time − 5 minutes
- Working time 3 hours
- Write using black or blue pen
- · Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Start a new booklet for each question

Total marks - 120

- Attempt Questions 1 − 8
- All questions are of equal value

Kincoppal-Rose Bay, School of the Sacred Heart HSC Mathematics Extension 2, Trial Examination 2008

Total Marks – 120 ´
Attempt Questions 1-8
All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (15 marks) Use a SEPARATE writing booklet.

(a)
$$\int \frac{2x}{\sqrt{1-x^4}} dx$$

(b)
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{2+\cos x}$$
 (3)

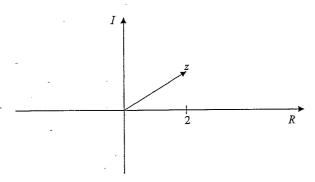
(c)
$$\int_{1}^{e^2} 3x^2 \ln x \ dx$$

$$\int \frac{dx}{\sqrt{x^2 - x + 1}}$$

(e) (i) Show that
$$\int_0^a f(x) dx = \int_0^a f(a-x) dx$$
 (2)

(ii) Use this property to show that
$$\int_0^1 x^3 (1-x)^6 dx = \frac{1}{840}$$

Question 2 (15 marks) Use a SEPARATE writing booklet.


Marks

- A complex number z is given by $z = \sqrt{3} + i$
 - Evaluate \overline{z} . Verify that $z\overline{z}$ is real.

Find $\frac{1}{a}$ in the form a + ib, where a and b are real.

1

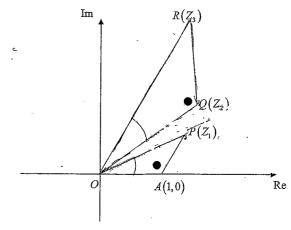
A point z on the Argand Diagram is given below:

Copy this diagram into your examination booklet and use it to plot the following points. Clearly label each point.

Express i-1 in modulus argument form, and hence simplify $(i-1)^5$

①

Question 2 continues on page 4


-3-

Kincoppal-Rose Bay, School of the Sacred Heart HSC Mathematics Extension 2, Trial Examination 2008

Question 2 (continued)

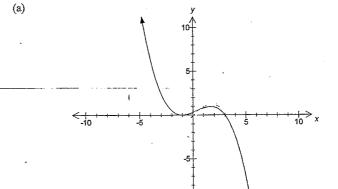
Sketch the locus and state its equation:

(e)

In the figure above, the points P, Q and A represent the complex numbers Z_1, Z_2 and (1,0)respectively. Given $\angle OAP = \angle OQR$ and $\angle AOP = \angle QOR$.

Explain why $R(Z_3)$ represents the complex number Z_1Z_2 .

You must support your answer with clear and complete mathematical reasons.


Question 4 (15 marks) Use a SEPARATE writing booklet.

Marks

- (a) (i) If $P(x) = x^4 + x^3 3x^2 5x 2$, show that P(x) = 0 has a multiple root, find this root and its multiplicity.
- 3
- (ii) Hence factorise $P(x) = x^4 + x^3 3x^2 5x 2$ into its linear factors.
- X
- (b) The equation $x^3 + 2x 1 = 0$ has roots α, β, γ . Find the monic equations with roots
 - $\alpha^2, \beta^2, \gamma^2.$
 - (ii) $\alpha\beta$, $\beta\gamma$, $\alpha\gamma$ (
 - (iii) Evaluate $\alpha^3 + \beta^3 + \gamma^3$
- (c) A point $P\left(ct, \frac{c}{t}\right)$ lies on the rectangular hyperbola $xy = c^2$.
 - (i) Show that the equation of the tangent at the point $P\left(ct, \frac{c}{t}\right)$ on the rectangular hyperbola is given by $x + t^2y = 2ct$.
 - (ii) Prove that the area bounded by the tangent and the asymptotes of the rectangular hyperbola is a constant.

Question 3 (15 marks) Use a SEPARATE writing booklet.

Marks

The graph of $f(x) = \frac{1}{10}(x+1)^2(3-x)$ is drawn above.

On separate diagrams, draw a neat sketch showing the main features of each of the following:

$$y = f(x-1)$$

$$y = f(|x|)$$
 ①

(iii)
$$y = \{f(x)\}^2$$

$$y = xf(x)$$

$$y^2 = f(x)$$

$$(vi) y = e^{f(x)}$$

(b) Given that
$$I_n = \int_0^{\frac{\pi}{4}} \sec^n x \, dx$$
 show that:

(i)
$$I_n = \frac{1}{n-1} \left((\sqrt{2})^{n-2} + (n-2)I_{n-2} \right)$$

(ii) Hence or otherwise evaluate I_4

1

1

End of Question 3

End of Question 4

Examiner: ND/BW

- 6 -

Examiner: ND/BW

- 5 -

Ouestion 5 (15 marks) Use a SEPARATE writing booklet.

Marks

- (a) ABC is an equilateral triangle, inscribed in a circle. X is a point on the minor arc BC.
 - Prove that ΔBDX | ΔACX

3

(iii) Prove that XB + XC = XA

3

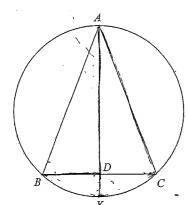


DIAGRAM NOT TO SCALE

(b) State whether each of the following are true or false giving brief reasons for your answers:

(i)
$$\int_0^\pi \sin 9x \ dx = 0$$

(ii)
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \sin x \, dx = 0$$

2

(c) Find the equation of the tangent to the curve $\cos 2x + \sin y = 1$ at the point $x = \frac{\pi}{6}$.

(d) Use the substitution $x = a \sin \theta$ to show that $\int \sqrt{(a^2 - x^2)} dx = \frac{1}{2} a^2 \sin^{-1} \frac{x}{a} + \frac{1}{2} x \sqrt{(a^2 - x^2)} + C$

3

End of Question 5

Examiner : ND/BW

Question 6 (15 marks) Use a SEPARATE writing booklet.

Marks

(a) (i) Given
$$a\alpha^2 + b\alpha + c = 0$$
 where $a, b, c \in \mathbb{R}$ and $\alpha \in \mathbb{C}$, prove that
$$a(\overline{\alpha})^2 + b\overline{\alpha} + c = 0$$

- (ii) A polynomial P(x) with real coefficients, has two of its zeros 3i and 1+2i. 3

 Find in expanded form, a possible polynomial P(x).
- (b) Use De Moivres Theorem and binomial expansion to find an expression for cos 4θ in terms of cos θ.

(c) (i) Given
$$z = \cos \theta + i \sin \theta$$
, prove $z^n + \frac{1}{z^n} = 2 \cos n\theta$

Hence by considering the expansion
$$\left(z + \frac{1}{z}\right)^4$$
 show that
$$\cos^4 \theta = \frac{1}{8}\cos 4\theta + \frac{1}{2}\cos 2\theta + \frac{3}{8}$$

(iii) Hence evaluate
$$\int_{0}^{\frac{\pi}{2}} \cos^{4}\theta \ d\theta$$

End of Question 6

Question 7 (15 marks) Use a SEPARATE writing booklet.

Marks

3

- (a) The roots of the polynomial $p(x) = x^3 + ax^2 + bx + c = 0$ are three consecutive terms of an arithmetic series. Prove that the relationship between the coefficients is given by $2a^3 9ab + 27c = 0$ Hint: make an appropriate choice for the roots in arithmetic progression.
- (b) A point $P(a\cos\theta, b\sin\theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a > 0 and b > 0. The equation of the normal at the point $P(a\cos\theta, b\sin\theta)$ is given by $xa\sin\theta - yb\cos\theta = (a^2 - b^2)\sin\theta\cos\theta$.
 - (i) Show that the ellipse intersects the rectangular hyperbola $xy = c^2$ in four points if $ab > 2c^2$
 - (ii) Show that for $0 < \theta < \frac{\pi}{2}$, the normal at P on the ellipse intersects the hyperbola 3 in two distinct points, say A and B.
 - (iii) If M is the mid-point of AB, show that the coordinates of M are given by $\left(\frac{\left(a^2-b^2\right)\cos\theta}{2a}, -\frac{\left(a^2-b^2\right)\sin\theta}{2b}\right)$
 - (iv) Hence find the locus of M as θ varies.

Question 8 (15 marks) Use a SEPARATE writing booklet.

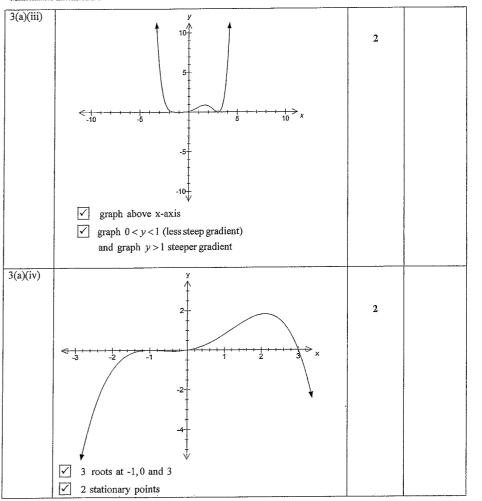
Marks

- For the function $y = \cos^{-1}(e^x)$,
 - (i) Find the domain and the range.
 - (ii) Draw a neat sketch the graph of $y = \cos^{-1}(e^x)$.
 - (iii) Hence draw a neat sketch of the curve $y = \frac{1}{(\cos^{-1}(e^x))}$
- (b) (i) Using induction, show that for each positive integer n, there are unique positive integers p_n and q_n such that: $(1+\sqrt{2})^n = p_n + q_n\sqrt{2}$
 - (ii) Show also that $p_n^2 2q_n^2 = (-1)^n$.
- (c) If f(xy)=f(x)+f(y), for all $x, y \ne 0$, prove that
 - f(1) = f(-1) = 0
 - (ii) f(x) is an even function.

End of paper

End of Question 7

Mathematics Extension 2 HSC Trial Examination 2008 Solutions


	Question	Criteria	Marks	Bands
	1(a)	$\int \frac{2x}{\sqrt{1-x^4}} dx \qquad Let \ u = x^2 \therefore \frac{du}{dx} = 2x or dx = \frac{du}{2x} \qquad \boxed{\checkmark}$	2	
9		$\int \frac{2x}{\sqrt{1-x^4}} dx = \int \frac{2x}{\sqrt{1-u^2}} \cdot \frac{du}{2x}$		
		$=\int \frac{1}{\sqrt{1-u^2}} du$		
		$= \sin^{-1} u + C$ $= \sin^{-1} x^2 + C$		
	1(b)	$\int_0^{\frac{\pi}{2}} \frac{dx}{2 + \cos x}$	3	
		Let $t = \tan \frac{x}{2}$		
	i	$\therefore \frac{dt}{dx} = \frac{1}{2}\sec^2\frac{x}{2} = \frac{1}{2}\left[1 + \tan^2\frac{x}{2}\right] = \frac{1}{2}\left[1 + t^2\right] \text{ or } dx = \frac{2 dt}{1 + t^2}$		
		and $\cos \theta = \frac{1 - t^2}{1 + t^2}$		
		$\therefore \int_{0}^{\frac{\pi}{2}} \frac{dx}{2 + \cos x} = \int_{0}^{1} \frac{1}{2 + \frac{1 - t^{2}}{1 + t^{2}}} \cdot \frac{2 dt}{1 + t^{2}}$		
		since $t = \tan \frac{\pi}{2} = 1$ and $t = \tan \frac{\theta}{2} = 0$		
		$= \int_0^1 \frac{1}{\frac{2(1+t^2)}{1+t^2} + \frac{1-t^2}{1+t^2}} \cdot \frac{2 dt}{1+t^2}$		
		$= \int_0^1 \frac{1+t^2}{3+t^2} \cdot \frac{2 dt}{1+t^2}$		
		$=\int_0^1 \frac{2}{3+t^2} dt$		
		$=2\int_0^1 \frac{1}{3+t^2} dt$		
		$=2\left[\frac{1}{\sqrt{3}}\tan^{-1}\frac{t}{\sqrt{3}}\right]_0^1$		
		$=\frac{\pi}{3\sqrt{3}}$		

Mathematics	Extension 2 HSC Trial Examination Solutions 2008		
1(c)	$\int_{1}^{e^{2}} 3x^{2} \ln x \ dx \qquad Let \ u = \ln x \qquad \frac{dv}{dx} = 3x^{2} \qquad \frac{du}{dx} = \frac{1}{x} \qquad v = x^{3}$	3	
	$\therefore \int_{1}^{e^{2}} 3x^{2} \ln x \ dx = uv - \int v \ du$		
	$= \left[x^3 \ln x \right]_1^{e^2} - \int_{C} x^3 \frac{dx}{x}$		
	$= \left[x^3 \ln x\right]_1^{e^2} - \int x^2 dx$		
	$= \left[x^3 \ln x \right]_1^{a^2} - \left[\frac{x^3}{3} \right]_1^{a^4} \qquad \boxed{\checkmark}$		
	$= \left[e^6 \ln e^2 - 1^3 \ln 1 \right] - \left[\frac{e^6}{3} - \frac{1}{3} \right]_1^{e^2}$		
	$=2e^{6}-\frac{e^{6}}{3}+\frac{1}{3}$		i.
	$=\frac{5e^6+1}{3}$		
l(d)	$\int \frac{dx}{\sqrt{x^2 - x + 1}} = \int \frac{1}{\sqrt{x^2 - x + (\frac{1}{2})^2 + 1 - (\frac{1}{2})^2}} dx \qquad \boxed{\checkmark}$	2	
	$= \int \frac{1}{\sqrt{(x-\frac{1}{2})^2+\frac{3}{4}}} dx$		
ļ	$= \log (x - \frac{1}{2}) + \sqrt{(x - \frac{1}{2})^2 + \frac{3}{4}} + C$		
1(e)(i)	$\int_{0}^{a} f(a-x) \ dx \qquad Let \ u = a - x \qquad \therefore \frac{du}{dx} = -1$	2	
	If $x = a$ then $u = a - a = x = 0$ then $u = a - 0 = a$		
	$\int_0^a f(u) \cdot -du = -\int_a^0 f(u) \ du$		
	$=\int_0^a f(u) \ du \qquad \boxed{\checkmark}$		
1(e)(ii)	$\int_0^1 x^3 (1-x)^6 dx = \int_0^1 (1-x)^3 (1-(1-x))^6 dx$	3	
	$= \int_0^1 (1 - 3x + 3x^2 - x^3)x^6 dx$		
	$= \int_0^1 x^6 - 3x^7 + 3x^8 - x^9 \ dx$		
1	$= \left[\frac{x^7}{7} - \frac{3x^8}{8} + \frac{x^9}{3} - \frac{x^{10}}{10} \right]_0^1$		
	$=\frac{1}{840}$		

Question	Criteria	Marks	Bands
2(a)(i)	$\overline{zz} = \left(\sqrt{3} + i\right)\left(\sqrt{3} - i\right) = 4$	2	
	∴ zz is real.		
2(a)(ii)	$\frac{1}{z} = \frac{1}{\left(\sqrt{3} + i\right)} \cdot \frac{\left(\sqrt{3} - i\right)}{\left(\sqrt{3} - i\right)} = \frac{\left(\sqrt{3} - i\right)}{4}$		
	$\left(\frac{1}{Z} = \frac{1}{\left(\sqrt{3} + i\right)} \cdot \frac{1}{\left(\sqrt{3} - i\right)} = \frac{1}{4}\right)$	1	
	(\sigma + i) (\sigma - i)		
2(b) (i)-(iii)	2iz y	3	
(1) (111)	1		
	▼ ^Z		
	———		
	2 R		
	$\frac{1}{z}$		
	\overline{z}		
2(c)	r= 3π	1	
	$i-1 = \sqrt{2}cis\frac{3\pi}{4}$		
1	$(i-1)^5 = (\sqrt{2})^5 cis \frac{15\pi}{4} = 4\sqrt{2}cis \frac{7\pi}{4}$		ĺ
	$=4\sqrt{2}\left\{\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right\}$		
	=4-4i	1	
2(d)(i)			
	$I \uparrow$	1	
	2		
	2		
ĺ	¥-		
		1	
	y = x		

2(d)(ii)	Ĭ 🋕		
	3		
		1	- Constitution of the Cons
	6	_	
	$\left(x-3\right)^2+y^2\leq 9$	1	
2(e)	$\angle AOR = \angle AOQ + \angle QOR$		
	$= \angle AOQ + \angle AOP$ i.e. $\arg z_1 = \arg z_2 + \arg z_1$ ©	1	
	the triangles ORQ and OPA are equiangular and hence similar		
i	∴ their sides are-proportional		
	$\left \begin{array}{c} \frac{OR}{OP} = \frac{OQ}{OA} \left(\frac{ z_3 }{ z_1 } = \frac{ z_2 }{ 1 } \right) \end{array} \right $	1	
	1		
	$= z_2 z_1 $ $\therefore z_3 = z_2.z i.e R \text{ represents the complex number } z_2z_1 \bigcirc$	1	
	2 ₃ = 2 ₂ .2 i.e. R Toprosonia dio comprox number 2 ₂ 2 ₁		
	t company to the second		

Question	Criteria	Marks	Bands
Question 3(a)(i)		1	
	5 -10 -10 -10		
	shift graph 1 place to the right		
3(a)(ii)	10 10 x	1	
	reflection in y axis		

3(a)(v)	у	2	
	10-		
	+		
	Ţ		
	5		
	6 4 2 4 6 x		
	-5-		
İ	1		
	-		
	-10		
	sketch only +ve section of orginal		
	graph and reflect in x - axis		
	for $-1 < y < 1$ the sketch is less steep and more		
	steep after y < -1 and y > 1		
3(a)(vi)	steep after y < 1 and y > 1	2	
3(4)(11)	A 10 Å		
	10+		
	<u> </u>		,
	5		
	\		
	<u> </u>		
	-6 -4 -2 2 4 6 ×		
	-5+		
	<u> </u>		
	1		
	-10-		
	where cuts x – axis now becomes $(-1,1)$ and $(3,1)$		
	anything that was negative now becomes an]	
	asymptote above the $x - \alpha xis$.		

$I_{n} = \int_{0}^{\frac{\pi}{4}} \sec^{n} x dx$ $\int \sec^{n} x dx = \int \sec^{n-2} x \cdot \sec^{2} x dx$ $where \ u = \sec^{n-2} x \cdot \frac{dv}{dx} = \sec^{2} x$ $\frac{du}{dx} = (n-2)\sec^{n-3} x \sec x \tan x \qquad v = \tan x$ $\int \sec^{n-2} x \cdot \sec^{2} x dx = uv - \int v du$ $= \sec^{n-2} x \tan x - \int (n-2)\sec^{n-3} x \sec x \tan^{2} x dx$ $= \sec^{n-2} x \tan x - (n-2)\int \sec^{n-2} x (\sec^{2} x - 1) dx$ $= \sec^{n-2} x \tan x - (n-2)\int \sec^{n} x \cdot \sec^{n-2} x dx$ $= \sec^{n-2} x \tan x - (n-2)\int \sec^{n} x \cdot \sec^{n-2} x dx$ $= \sec^{n-2} x \tan x - (n-2)\int \sec^{n} x \cdot \sec^{n-2} x dx$ $= \sec^{n} x \cdot dx + (n-2)\int \sec^{n} x \cdot \sec^{n-2} x dx$ $\int \sec^{n} x dx + (n-2)\int \sec^{n} x \cdot \tan x - (n-2)\int \sec^{n} x dx$ $\int \sec^{n} x dx + (n-2)\int \sec^{n} x \cdot \tan x - (n-2)\int \sec^{n} x dx$ $\int \sec^{n} x dx + (n-2)\int \sec^{n} x \cdot \tan x - (n-2)\int \sec^{n} x dx$ $\int a \cot^{n} x dx + \int a \cot^{n} x \cdot \tan x - (n-2)\int a \cot^{n} x dx$ $\int a \cot^{n} x dx + \int a \cot^{n} x \cdot \tan x - (n-2)\int a \cot^{n} x dx$ $\int a \cot^{n} x dx + \int a \cot^{n} x \cdot \tan x - (n-2)\int a \cot^{n} x dx$ $\int a \cot^{n} x dx + \int a \cot^{n} x \cdot \tan x - (n-2)\int a \cot^{n} x dx$ $\int a \cot^{n} x dx + \int a \cot^{n} x \cdot \tan x - (n-2)\int a \cot^{n} x dx$ $\int a \cot^{n} x dx + \int a \cot^{n} x dx$ $\int a \cot^{n} x d$	Maniomanio	s Extension 2 HSC Trial Examination Solutions 2008		
where $u = \sec^{n-2} x$ $\frac{dv}{dx} = \sec^2 x$ $\frac{du}{dx} = (n-2)\sec^{n-3} x \sec x \tan x \qquad v = \tan x$ $\int \sec^{n-2} x \tan x - \int (n-2)\sec^{n-3} x \sec x \tan^2 x dx$ $= \sec^{n-2} x \tan x - \int (n-2) \sec^{n-2} x \tan^2 x dx$ $= \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} x \tan^2 x dx$ $= \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} x (\sec^2 x - 1) dx$ $= \sec^{n-2} x \tan x - (n-2) \int \sec^n x - \sec^{n-2} dx$ $\therefore \int \sec^n x dx = \sec^{n-2} x \tan x - (n-2) \int \sec^n x - (n-2) \int \sec^{n-2} dx$ $\int \sec^n x dx + (n-2) \int \sec^n x = \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} dx$ $(n-1) \int \sec^n x dx = \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} dx$ $\int \sec^n x dx = \frac{1}{n-1} \left[\sec^{n-2} x \tan x - \frac{n-2}{n-1} \int \sec^{n-2} dx \right]$ $I_n = \frac{1}{n-1} \left[\left[\sec^{n-2} (\frac{\pi}{4}) \tan(\frac{\pi}{4}) - \sec^{n-2} (0) \tan(0) \right] - (n-2)I_{n-2} \right] $ $I_n = \frac{1}{n-1} \left[\left(\sqrt{2} \right)^{n-2} - (n-2)I_{n-2} \right]$ $3(b)(ii)$ $I_4 = \frac{1}{3} \left[\left(\sqrt{2} \right)^2 - 2I_2 \right]$ $I_2 = \frac{1}{2} \left[\left(\sqrt{2} \right)^0 - 0I_0 \right] = \frac{1}{2}$ $\therefore I_4 = \frac{1}{3} \left[\left(\sqrt{2} \right)^2 - 2\left(\frac{1}{2} \right) \right]$ $= \frac{2}{3} - \frac{1}{3}$	3(b)(i)	$I_n = \int_0^{\frac{\pi}{4}} \sec^n x \ dx$	4	
$\frac{du}{dx} = (n-2)\sec^{n-3}x \sec x \tan x \qquad v = \tan x$ $\int \sec^{n-2}x \cdot \sec^2x dx = uv - \int v du$ $= \sec^{n-2}x \tan x - \int (n-2)\sec^{n-3}x \sec x \tan^2x dx$ $= \sec^{n-2}x \tan x - (n-2)\int \sec^{n-2}x \tan^2x dx$ $= \sec^{n-2}x \tan x - (n-2)\int \sec^{n-2}x \csc^{n-2}x dx$ $= \sec^{n-2}x \tan x - (n-2)\int \sec^{n-2}x \cos^{n-2}x dx$ $= \sec^{n-2}x \tan x - (n-2)\int \sec^{n}x - \sec^{n-2}dx$ $\therefore \int \sec^{n}x dx = \sec^{n-2}x \tan x - (n-2)\int \sec^{n}x - (n-2)\int \sec^{n-2}dx$ $\int \sec^{n}x dx + (n-2)\int \sec^{n}x = \sec^{n-2}x \tan x - (n-2)\int \sec^{n-2}dx$ $(n-1)\int \sec^{n}x dx = \sec^{n-2}x \tan x - (n-2)\int \sec^{n-2}dx$ $\int \sec^{n}x dx = \frac{1}{n-1}\sec^{n-2}x \tan x - \frac{n-2}{n-1}\int \sec^{n-2}dx$ $\int \sec^{n}x dx = \frac{1}{n-1}\left[\left[\sec^{n-2}x \tan x\right]_0^{\frac{n}{2}} - (n-2)I_{n-2}\right]$ $I_n = \frac{1}{n-1}\left[\left[\sec^{n-2}(\frac{\pi}{4})\tan(\frac{\pi}{4}) - \sec^{n-2}(0)\tan(0)\right] - (n-2)I_{n-2}\right] \boxed{V}$ $I_n = \frac{1}{n-1}\left[\left(\sqrt{2}\right)^{n-2} - (n-2)I_{n-2}\right]$ $3(b)(ii)$ $I_4 = \frac{1}{3}\left[\left(\sqrt{2}\right)^2 - 2I_2\right]$ $I_2 = \frac{1}{2}\left[\left(\sqrt{2}\right)^0 - 0I_0\right] = \frac{1}{2}$ $\therefore I_4 = \frac{1}{3}\left[\left(\sqrt{2}\right)^2 - 2\left(\frac{1}{2}\right)\right]$ $= \frac{2}{3} - \frac{1}{3}$		$\int \sec^n x \ dx = \int \sec^{n-2} x \cdot \sec^2 x dx$		
$\int \sec^{n-2} x \tan x - \int (n-2) \sec^{n-3} x \sec x \tan^{2} x dx$ $= \sec^{n-2} x \tan x - \int (n-2) \int \sec^{n-2} x \tan^{2} x dx$ $= \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} x \tan^{2} x dx$ $= \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} x (\sec^{2} x - 1) dx$ $= \sec^{n-2} x \tan x - (n-2) \int \sec^{n} x - (n-2) \int \sec^{n-2} dx$ $\int \sec^{n} x dx = \sec^{n-2} x \tan x - (n-2) \int \sec^{n} x - (n-2) \int \sec^{n-2} dx$ $\int \sec^{n} x dx + (n-2) \int \sec^{n} x - (n-2) \int \sec^{n} x - (n-2) \int \sec^{n-2} dx$ $(n-1) \int \sec^{n} x dx = \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} dx$ $\int \sec^{n} x dx = \frac{1}{n-1} \sec^{n-2} x \tan x - \frac{n-2}{n-1} \int \sec^{n-2} dx \boxed{\checkmark}$ $I_{n} = \frac{1}{n-1} \left[\left[\sec^{n-2} x \tan x \right]_{0}^{\frac{\pi}{2}} - (n-2) I_{n-2} \right]$ $I_{n} = \frac{1}{n-1} \left[\left[\left(\sqrt{2} \right)^{n-2} - (n-2) I_{n-2} \right] \right]$ $I_{1} = \frac{1}{n-1} \left[\left(\sqrt{2} \right)^{n-2} - (n-2) I_{n-2} \right]$ $3(b)(ii)$ $I_{4} = \frac{1}{3} \left[\left(\sqrt{2} \right)^{2} - 2 I_{2} \right]$ $\therefore I_{4} = \frac{1}{3} \left[\left(\sqrt{2} \right)^{2} - 2 \left(\frac{1}{2} \right) \right]$ $= \frac{2}{3} - \frac{1}{3}$		ux		
$= \sec^{n-2} x \tan x - \int (n-2)\sec^{n-3} x \sec x \tan^2 x dx$ $= \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} x \tan^2 x dx$ $= \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} x (\sec^2 x - 1) dx$ $= \sec^{n-2} x \tan x - (n-2) \int \sec^n x - \sec^{n-2} dx \qquad \boxed{\checkmark}$ $\therefore \int \sec^n x dx = \sec^{n-2} x \tan x - (n-2) \int \sec^n x - (n-2) \int \sec^{n-2} dx$ $\int \sec^n x dx + (n-2) \int \sec^n x - (n-2) \int \sec^{n-2} dx \qquad \boxed{\checkmark}$ $(n-1) \int \sec^n x dx = \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} dx \qquad \boxed{\checkmark}$ $\int \sec^n x dx = \frac{1}{n-1} \sec^{n-2} x \tan x - \frac{n-2}{n-1} \int \sec^{n-2} dx \qquad \boxed{\checkmark}$ $I_n = \frac{1}{n-1} \left[\left[\sec^{n-2} x \tan x \right]_0^{\frac{\pi}{2}} - (n-2) I_{n-2} \right]$ $I_n = \frac{1}{n-1} \left[\left[\sec^{n-2} \left(\frac{\pi}{4} \right) \tan \left(\frac{\pi}{4} \right) - \sec^{n-2} (0) \tan (0) \right] - (n-2) I_{n-2} \right] \boxed{\checkmark}$ $I_n = \frac{1}{n-1} \left[\left(\sqrt{2} \right)^{n-2} - (n-2) I_{n-2} \right]$ $3(b)(ii)$ $I_4 = \frac{1}{3} \left[\left(\sqrt{2} \right)^2 - 2 I_2 \right]$ $\vdots I_4 = \frac{1}{3} \left[\left(\sqrt{2} \right)^2 - 2 \left(\frac{1}{2} \right) \right]$ $= \frac{2}{3} - \frac{1}{3}$		$\frac{du}{dx} = (n-2)\sec^{n-3}x \sec x \tan x \qquad v = \tan x$		
$= \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} x \tan^2 x dx$ $= \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} x (\sec^2 x - 1) dx$ $= \sec^{n-2} x \tan x - (n-2) \int \sec^n x - \sec^{n-2} x dx$ $= \sec^{n-2} x \tan x - (n-2) \int \sec^n x - \sec^{n-2} x dx$ $\therefore \int \sec^n x dx = \sec^{n-2} x \tan x - (n-2) \int \sec^n x - (n-2) \int \sec^{n-2} dx$ $\int \sec^n x dx + (n-2) \int \sec^n x = \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} dx$ $(n-1) \int \int \sec^n x dx = \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} dx$ $\int \sec^n x dx = \frac{1}{n-1} \sec^{n-2} x \tan x - \frac{n-2}{n-1} \int \sec^{n-2} dx \boxed{\checkmark}$ $I_n = \frac{1}{n-1} \left[\left[\sec^{n-2} x \tan x \right]_0^{\frac{\pi}{4}} - (n-2) I_{n-2} \right]$ $I_n = \frac{1}{n-1} \left[\left[\sec^{n-2} \left(\frac{x}{4} \right) \tan \left(\frac{x}{4} \right) - \sec^{n-2} (0) \tan (0) \right] - (n-2) I_{n-2} \right] \boxed{\checkmark}$ $I_n = \frac{1}{n-1} \left[\left(\sqrt{2} \right)^{n-2} - (n-2) I_{n-2} \right]$ $3(b)(ii)$ $I_4 = \frac{1}{3} \left[\left(\sqrt{2} \right)^2 - 2 I_2 \right]$ $I_2 = \frac{1}{2} \left[\left(\sqrt{2} \right)^0 - 0 I_0 \right] = \frac{1}{2}$ $\therefore I_4 = \frac{1}{3} \left[\left(\sqrt{2} \right)^2 - 2 \left(\frac{1}{2} \right) \right]$ $= \frac{2}{3} - \frac{1}{3}$		J		
$= \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} x (\sec^2 x - 1) dx$ $= \sec^{n-2} x \tan x - (n-2) \int \sec^n x - \sec^{n-2} dx$ $\therefore \int \sec^n x dx = \sec^{n-2} x \tan x - (n-2) \int \sec^n x - (n-2) \int \sec^{n-2} dx$ $\int \sec^n x dx + (n-2) \int \sec^n x = \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} dx$ $(n-1) \int \sec^n x dx = \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} dx$ $\int \sec^n x dx = \frac{1}{n-1} \sec^{n-2} x \tan x - \frac{n-2}{n-1} \int \sec^{n-2} dx$ $I_n = \frac{1}{n-1} \left[\left[\sec^{n-2} x \tan x \right]_{n-1}^{\frac{\pi}{2}} - (n-2) I_{n-2} \right]$ $I_n = \frac{1}{n-1} \left[\left[\sec^{n-2} \left(\frac{x}{4} \right) \tan \left(\frac{x}{4} \right) - \sec^{n-2} (0) \tan (0) \right] - (n-2) I_{n-2} \right] \boxed{I}$ $I_n = \frac{1}{n-1} \left[\left(\sqrt{2} \right)^{n-2} - (n-2) I_{n-2} \right]$ $3(b)(ii)$ $I_4 = \frac{1}{3} \left[\left(\sqrt{2} \right)^2 - 2 I_2 \right]$ $\therefore I_4 = \frac{1}{3} \left[\left(\sqrt{2} \right)^2 - 2 \left(\frac{1}{2} \right) \right]$ $= \frac{2}{3} - \frac{1}{3}$				
$= \sec^{n-2} x \tan x - (n-2) \int \sec^{n} x - \sec^{n-2} dx$ $\therefore \int \sec^{n} x dx = \sec^{n-2} x \tan x - (n-2) \int \sec^{n} x - (n-2) \int \sec^{n-2} dx$ $\int \sec^{n} x dx + (n-2) \int \sec^{n} x = \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} dx$ $(n-1) \int \sec^{n} x dx = \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} dx$ $\int \sec^{n} x dx = \frac{1}{n-1} \sec^{n-2} x \tan x - \frac{n-2}{n-1} \int \sec^{n-2} dx$ $I_{n} = \frac{1}{n-1} \left[\left[\sec^{n-2} x \tan x \right]_{0}^{\frac{\pi}{4}} - (n-2) I_{n-2} \right]$ $I_{n} = \frac{1}{n-1} \left[\left[\sec^{n-2} \left(\frac{\pi}{4} \right) \tan \left(\frac{\pi}{4} \right) - \sec^{n-2} \left(0 \right) \tan \left(0 \right) \right] - (n-2) I_{n-2} \right] \boxed{V}$ $I_{n} = \frac{1}{n-1} \left[\left(\sqrt{2} \right)^{n-2} - (n-2) I_{n-2} \right]$ $3(b)(ii)$ $I_{4} = \frac{1}{3} \left[\left(\sqrt{2} \right)^{2} - 2 I_{2} \right]$ \vdots $I_{2} = \frac{1}{2} \left[\left(\sqrt{2} \right)^{0} - 0 I_{0} \right] = \frac{1}{2}$ \vdots $I_{4} = \frac{1}{3} \left[\left(\sqrt{2} \right)^{2} - 2 \left(\frac{1}{2} \right) \right]$ $= \frac{2}{3} - \frac{1}{3}$		1		
$ \therefore \int \sec^{n} x dx = \sec^{n-2} x \tan x - (n-2) \int \sec^{n} x - (n-2) \int \sec^{n-2} dx \\ \int \sec^{n} x dx + (n-2) \int \sec^{n} x = \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} dx \\ (n-1) \int \sec^{n} x dx = \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} dx \\ \int \sec^{n} x dx = \frac{1}{n-1} \sec^{n-2} x \tan x - \frac{n-2}{n-1} \int \sec^{n-2} dx \boxed{\checkmark} $ $ I_{n} = \frac{1}{n-1} \left[\left[\sec^{n-2} x \tan x \right]_{0}^{\frac{\pi}{4}} - (n-2) I_{n-2} \right] $ $ I_{n} = \frac{1}{n-1} \left[\left[\sec^{n-2} \left(\frac{\pi}{4} \right) \tan \left(\frac{\pi}{4} \right) - \sec^{n-2} (0) \tan (0) \right] - (n-2) I_{n-2} \right] \boxed{\checkmark} $ $ I_{n} = \frac{1}{n-1} \left[\left(\sqrt{2} \right)^{n-2} - (n-2) I_{n-2} \right] $ $ I_{2} = \frac{1}{2} \left[\left(\sqrt{2} \right)^{0} - 0 I_{0} \right] = \frac{1}{2} $ $ \therefore I_{4} = \frac{1}{3} \left[\left(\sqrt{2} \right)^{2} - 2 \left(\frac{1}{2} \right) \right] $ $ = \frac{2}{3} - \frac{1}{3} $				
$\int \sec^{n} x dx + (n-2) \int \sec^{n} x = \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} dx$ $(n-1) \int \sec^{n} x dx = \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} dx$ $\int \sec^{n} x dx = \frac{1}{n-1} \sec^{n-2} x \tan x - \frac{n-2}{n-1} \int \sec^{n-2} dx \boxed{V}$ $I_{n} = \frac{1}{n-1} \Big[\Big[\sec^{n-2} x \tan x \Big]_{0}^{\frac{\pi}{4}} - (n-2) I_{n-2} \Big]$ $I_{n} = \frac{1}{n-1} \Big[\Big[\sec^{n-2} (\frac{\pi}{4}) \tan(\frac{\pi}{4}) - \sec^{n-2} (0) \tan(0) \Big] - (n-2) I_{n-2} \Big] \boxed{V}$ $I_{n} = \frac{1}{n-1} \Big[\Big(\sqrt{2} \Big)^{n-2} - (n-2) I_{n-2} \Big]$ $I_{2} = \frac{1}{2} \Big[\Big(\sqrt{2} \Big)^{0} - 0 I_{0} \Big] = \frac{1}{2}$ $\therefore I_{4} = \frac{1}{3} \Big[\Big(\sqrt{2} \Big)^{2} - 2 \Big(\frac{1}{2} \Big) \Big]$ $= \frac{2}{3} - \frac{1}{3}$		$= \sec^{n-2} x \tan x - (n-2) \int \sec^n x - \sec^{n-2} dx$		To the state of th
$(n-1)\int \sec^{n} x dx = \sec^{n-2} x \tan x - (n-2)\int \sec^{n-2} dx$ $\int \sec^{n} x dx = \frac{1}{n-1} \sec^{n-2} x \tan x - \frac{n-2}{n-1}\int \sec^{n-2} dx \boxed{\checkmark}$ $I_{n} = \frac{1}{n-1} \left[\left[\sec^{n-2} x \tan x \right]_{0}^{\frac{\pi}{4}} - (n-2)I_{n-2} \right]$ $I_{n} = \frac{1}{n-1} \left[\left[\sec^{n-2} \left(\frac{\pi}{4} \right) \tan \left(\frac{\pi}{4} \right) - \sec^{n-2} (0) \tan (0) \right] - (n-2)I_{n-2} \right] \boxed{\checkmark}$ $I_{n} = \frac{1}{n-1} \left[\left(\sqrt{2} \right)^{n-2} - (n-2)I_{n-2} \right]$ $I_{2} = \frac{1}{2} \left[\left(\sqrt{2} \right)^{0} - 0I_{0} \right] = \frac{1}{2}$ $\therefore I_{4} = \frac{1}{3} \left[\left(\sqrt{2} \right)^{2} - 2 \left(\frac{1}{2} \right) \right]$ $= \frac{2}{3} - \frac{1}{3}$		$\therefore \int \sec^n x dx = \sec^{n-2} x \tan x - (n-2) \int \sec^n x - (n-2) \int \sec^{n-2} dx$		
$\int \sec^{n} x dx = \frac{1}{n-1} \sec^{n-2} x \tan x - \frac{n-2}{n-1} \int \sec^{n-2} dx \qquad \boxed{\checkmark}$ $I_{n} = \frac{1}{n-1} \left[\left[\sec^{n-2} x \tan x \right]_{0}^{\frac{\pi}{4}} - (n-2)I_{n-2} \right]$ $I_{n} = \frac{1}{n-1} \left[\left[\sec^{n-2} \left(\frac{x}{4} \right) \tan \left(\frac{x}{4} \right) - \sec^{n-2} (0) \tan (0) \right] - (n-2)I_{n-2} \right] \boxed{\checkmark}$ $I_{n} = \frac{1}{n-1} \left[\left(\sqrt{2} \right)^{n-2} - (n-2)I_{n-2} \right]$ $I_{2} = \frac{1}{2} \left[\left(\sqrt{2} \right)^{0} - 0I_{0} \right] = \frac{1}{2}$ $\therefore I_{4} = \frac{1}{3} \left[\left(\sqrt{2} \right)^{2} - 2 \left(\frac{1}{2} \right) \right]$ $= \frac{2}{3} - \frac{1}{3}$		$\int \sec^{n} x dx + (n-2) \int \sec^{n} x = \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} dx$		
$I_{n} = \frac{1}{n-1} \left[\left[\sec^{n-2} x \tan x \right]_{0}^{\frac{\pi}{4}} - (n-2)I_{n-2} \right]$ $I_{n} = \frac{1}{n-1} \left[\left[\sec^{n-2} (\frac{\pi}{4}) \tan(\frac{\pi}{4}) - \sec^{n-2} (0) \tan(0) \right] - (n-2)I_{n-2} \right] $ $I_{n} = \frac{1}{n-1} \left[\left(\sqrt{2} \right)^{n-2} - (n-2)I_{n-2} \right]$ $I_{4} = \frac{1}{3} \left[\left(\sqrt{2} \right)^{2} - 2I_{2} \right]$ $I_{2} = \frac{1}{2} \left[\left(\sqrt{2} \right)^{0} - 0I_{0} \right] = \frac{1}{2}$ $\therefore I_{4} = \frac{1}{3} \left[\left(\sqrt{2} \right)^{2} - 2 \left(\frac{1}{2} \right) \right]$ $= \frac{2}{3} - \frac{1}{3}$		$(n-1)$ $\int \sec^n x dx = \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} dx$		
$I_{n} = \frac{1}{n-1} \left[\left[\sec^{n-2} \left(\frac{\pi}{4} \right) \tan \left(\frac{\pi}{2} \right) - \sec^{n-2} (0) \tan (0) \right] - (n-2) I_{n-2} \right] \boxed{I}$ $I_{n} = \frac{1}{n-1} \left[\left(\sqrt{2} \right)^{n-2} - (n-2) I_{n-2} \right]$ $I_{4} = \frac{1}{3} \left[\left(\sqrt{2} \right)^{2} - 2 I_{2} \right]$ $I_{2} = \frac{1}{2} \left[\left(\sqrt{2} \right)^{0} - 0 I_{0} \right] = \frac{1}{2}$ $\therefore I_{4} = \frac{1}{3} \left[\left(\sqrt{2} \right)^{2} - 2 \left(\frac{1}{2} \right) \right]$ $= \frac{2}{3} - \frac{1}{3}$		$\int \sec^{n} x dx = \frac{1}{n-1} \sec^{n-2} x \tan x - \frac{n-2}{n-1} \int \sec^{n-2} dx \qquad \boxed{V}$		
$I_{n} = \frac{1}{n-1} \left[\left(\sqrt{2} \right)^{n-2} - (n-2)I_{n-2} \right]$ $I_{4} = \frac{1}{3} \left[\left(\sqrt{2} \right)^{2} - 2I_{2} \right]$ $I_{2} = \frac{1}{2} \left[\left(\sqrt{2} \right)^{0} - 0I_{0} \right] = \frac{1}{2}$ $\therefore I_{4} = \frac{1}{3} \left[\left(\sqrt{2} \right)^{2} - 2\left(\frac{1}{2} \right) \right]$ $= \frac{2}{3} - \frac{1}{3}$		<i>n</i> -1 L		
$I_{4} = \frac{1}{3} \left[\left(\sqrt{2} \right)^{2} - 2I_{2} \right]$ $I_{2} = \frac{1}{2} \left[\left(\sqrt{2} \right)^{0} - 0I_{0} \right] = \frac{1}{2}$ $\therefore I_{4} = \frac{1}{3} \left[\left(\sqrt{2} \right)^{2} - 2\left(\frac{1}{2} \right) \right]$ $= \frac{2}{3} - \frac{1}{3}$		$I_n = \frac{1}{n-1} \left[\left[\sec^{n-2} \left(\frac{\pi}{4} \right) \tan \left(\frac{\pi}{4} \right) - \sec^{n-2} (0) \tan(0) \right] - (n-2) I_{n-2} \right] \boxed{\checkmark}$		
$I_{4} = \frac{1}{3} \left[(\sqrt{2})^{2} - 2I_{2} \right]$ $I_{2} = \frac{1}{2} \left[(\sqrt{2})^{0} - 0I_{0} \right] = \frac{1}{2}$ $\therefore I_{4} = \frac{1}{3} \left[(\sqrt{2})^{2} - 2\left(\frac{1}{2}\right) \right]$ $= \frac{2}{3} - \frac{1}{3}$		$I_n = \frac{1}{n-1} \left[\left(\sqrt{2} \right)^{n-2} - (n-2)I_{n-2} \right]$		
$I_{4} = \frac{1}{3} \left[(\sqrt{2})^{2} - 2I_{2} \right]$ $I_{2} = \frac{1}{2} \left[(\sqrt{2})^{0} - 0I_{0} \right] = \frac{1}{2}$ $\therefore I_{4} = \frac{1}{3} \left[(\sqrt{2})^{2} - 2\left(\frac{1}{2}\right) \right]$ $= \frac{2}{3} - \frac{1}{3}$		W. YE		
$I_{2} = \frac{1}{2} \left[\left(\sqrt{2} \right)^{0} - 0I_{0} \right] = \frac{1}{2}$ $\therefore I_{4} = \frac{1}{3} \left[\left(\sqrt{2} \right)^{2} - 2 \left(\frac{1}{2} \right) \right]$ $= \frac{2}{3} - \frac{1}{3}$	3(b)(ii)	$I_{L} = \frac{1}{2} \left[\left(\sqrt{2} \right)^{2} - 2I_{2} \right]$	1	
$\therefore I_4 = \frac{1}{3} \left[\left(\sqrt{2} \right)^2 - 2 \left(\frac{1}{2} \right) \right] \\ = \frac{2}{3} - \frac{1}{3}$		3 F, , ¬		
$=\frac{2}{3}-\frac{1}{3}$		$I_2 = \frac{1}{2} \left[\left(\sqrt{2} \right)^2 - 0I_0 \right] = \frac{1}{2}$		
		$\therefore I_4 = \frac{1}{3} \left[\left(\sqrt{2} \right)^2 - 2 \left(\frac{1}{2} \right) \right]$		
$=\frac{1}{2}$		1		
		$=\frac{1}{3}$		

Question	Criteria	Marks	Bands
4(a)(i)	$P'(x) = 4x^3 + 3x^2 - 6x - 5$		
	$P''(x) = 12x^2 + 6x - 6$	1	
	$12x^2 + 6x - 6 = 0 \Rightarrow x = -1, -\frac{1}{2}$		į
	P'(-1) = 0	1	
	$\therefore x = -1$ is a root of multiplicity 3	1	
4(a)(ii)	$x^4 + x^3 - 3x^2 - 5x - 2 = (x+1)^3 (x-2)$	1	
4(b)(i)	$\left(\sqrt{x}\right)^3 + 2\sqrt{x} - 1 = 0$	1	
	$x\sqrt{x} + 2\sqrt{x} = 1$	1	
	$\left(\sqrt{x}\left(x+2\right)\right)^2 = 1$		
	$x\left(x^2+4x+4\right)=1$		
	$x^3 + 4x^2 + 4x - 1 = 0$	1	
4(b)(ii)	$\frac{x^3 + 4x^2 + 4x - 1 = 0}{\alpha \beta, \alpha \gamma, \beta \gamma = \frac{\alpha \beta \gamma}{\gamma}, \frac{\alpha \beta \gamma}{\beta}, \frac{\alpha \beta \gamma}{\alpha} = \frac{1}{\gamma}, \frac{1}{\beta}, \frac{1}{\alpha}}$	1	
	$\left(\frac{1}{r}\right)^3 + 2\left(\frac{1}{r}\right) - 1 = 0$	1	
	$\frac{1}{x^3} + \frac{2}{x} - 1 = 0$		
	x x	1	
4(b)(iii)	$\frac{x^3 - 2x^2 - 1 = 0}{\alpha^3 + 2\alpha - 1 = 0}$	-	-
	$\beta^3 + 2\beta - 1 = 0$		
	$\gamma^3 + 2\gamma - 1 = 0$		
	$(\alpha^3 + \beta^3 + \gamma^3) + 2(\alpha + \beta + \gamma) - 3 = 0$	1	
I	$\therefore \alpha^3 + \beta^3 + \gamma^3 = 3 - 2(0)$		
	=3	,	
(c)(i)	$y' = -\frac{c}{x^2} \qquad \text{at } \left(ct, \frac{c}{t}\right) y' = -\frac{1}{t^2}$	1	
1	$y - \frac{c}{t} = -\frac{1}{t^2}(x - ct)$		
	$yt^2 - ct = -x + ct$		
	$yt^2 + x = 2ct$	1	
(c)(ii)	$M: x = 0 \Rightarrow y = \frac{2c}{t}$		
1	$N: y = 0 \Rightarrow x = 2ct$		
ξ	$area = \frac{1}{2}(2ct)\left(\frac{2c}{t}\right)$	1	
=	$=2c^2$ which is a constant N		
	"	1	

Question	Criteria	Marks	Bands
5(a)(i)	$\angle BAC = 60 \ (\triangle ABC \ is \ equliateral \ \Delta)$	3	
	∠BXC=120 (opposite angles in cyclic quad ABXC are supplementary)		
	$\angle AXC = \angle ABC = 60$ (\angle 's on smae arc at circumference are equal)		
	$\therefore \angle AXC = \angle AXB = 60$		
			1
	in ΔBDX and ΔACX		
	$\angle DXC = \angle AXB = 60 \ (proved \ above)$		
	$\angle DXB = \angle CAX$ (\angle 's at circumference on same arc) $$		
	∴ ∆BDX ∆ACX (eqiangular)		
5(a)(ii)	$\Delta CDX \parallel \Delta ABX$ (as proved in (i) above)	3	
	$\sin ce \Delta BDX \parallel \Delta ACX$		
	$\therefore \frac{BD}{AC} = \frac{BX}{AX} = \frac{DX}{CX} \text{and} \frac{CD}{AB} = \frac{CX}{AX} = \frac{DX}{BX}$		
	$\therefore BD = \frac{BX \cdot AC}{AX} \qquad \text{and } CD = \frac{CX \cdot AB}{AX} \qquad \boxed{\checkmark}$		
	AA AA		ļ
	since BC = BD + DC		
	hence $BC = \frac{BX \cdot AC}{AY} + \frac{CX \cdot AB}{AY}$		
	Hence $BC = {AX} + {AX}$		
	BC.AX = (BX.AC) + (CX.AB)		
	and as $BC = AC = AB$ (equaliteral Δ)	ļ	1
	∴ ÷ LHS and RHS by BC		
	$\therefore AX = BX + CX$		
5(b)(i)	$y = \sin 9x$ when $0 < x < \pi$ it has $4\frac{1}{2}$ cycles,	1	
	more area above x – axis then below		
	$\therefore \int_0^{\pi} \sin 9x \ dx \neq 0 \qquad (false)$		
5(b)(ii)	$x \sin x$ is an even function	2	
	$\therefore \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \sin x dx = 2 \int_{0}^{\frac{\pi}{2}} x \sin x dx \neq 0 \qquad \boxed{\checkmark}$		
	$\int \frac{\pi}{2}$		
	(false)		
			·

5(c)	slope tangent = $\frac{dy}{dx}$: (differentiating implicitly)	3	:
	$-2\sin 2x + \cos y \frac{dy}{dx} = 0$		
	$\cos y \frac{dy}{dx} = 2\sin 2x$		
	$\frac{dy}{dx} = \frac{2\sin 2x}{\cos y}$		
	At $(\frac{\pi}{6}, \frac{\pi}{6})$, slope of tangent = 2		
	Equation of tangent is		
	$y - \frac{\pi}{6} = 2\left(x - \frac{\pi}{6}\right)$		
	$y = 2x - \frac{\pi}{6}$		
5(d)	Let $x = a\sin\theta$ $dx = a\sin\theta d\theta$	3	
	$\int \sqrt{a^2 - x^2} dx = \int \sqrt{a^2 - a^2 \sin^2 \theta} a \cos \theta d\theta = a^2 \int \cos^2 \theta d\theta \boxed{\checkmark}$		
	$=\frac{a^2}{2}\int\cos 2\theta+1d\theta=$		
	$\left \frac{a^2}{2} \left[\frac{1}{2} \sin 2\theta + \theta \right] + C = \frac{a^2}{2} \left[\sin \theta \cos \theta + \theta \right] + C \qquad \boxed{\checkmark}$		
	From this triangle:		
	$x \qquad \frac{a}{\theta} \qquad \frac{x}{a} = \sin \theta$ $\sqrt{a^2 - x^2} \qquad \cos \theta = \frac{\sqrt{a^2 - x^2}}{a}$		
	$\theta = \sin^{-1} a$		
	$\frac{a^2}{2} \left[\sin \theta \cos \theta + \theta \right] + C = $		
	$\left[\frac{a^2}{2} \left[\frac{x}{a} \frac{\sqrt{a^2 - x^2}}{a} + \sin^{-1} \frac{x}{a} \right] + C = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + C \right]$		

Question	Criteria	Marks	Bands
6(a)(i)	$\overline{a\alpha^2 + b\alpha + c} = \overline{0}$	1	
	$\frac{1}{a\alpha^2 + b\alpha + c} = 0$		
	$a\alpha^2 + b\alpha + c = 0$		
	$\frac{1}{a\alpha^2} + \frac{1}{b\alpha} + c = 0$	1	
	- c is a solution		·
6(a)(ii)	(x-3i)(x+3i)(x-(1+2i))(x-(1-2i))	1	
	$(x^2+9)(x^2-2x+5)$	1	
	$x^4 - 2x^3 + 14x^2 - 18x + 45$	1	
6(b)	$\cos 4\theta + i \sin 4\theta = (\cos \theta + i \sin \theta)^4$		
	$= \cos^4 \theta + 4i\cos^3 \theta \sin \theta - 6\cos^2 \theta \sin^2 \theta - 4i\cos \theta \sin^3 \theta + \sin^4 \theta$	1	
	equate real part:	1	
	$\cos 4\theta = \cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta$	•	
	$= \cos^4 \theta - 6\cos^2 \theta \left(1 - \cos^2 \theta\right) + \left(1 - \cos^2 \theta\right)^2$		
	$=8\cos^4\theta-8\cos^2\theta+1$	1	
6(c)(i)	$z'' = \cos n\theta + i \sin n\theta$	1	
	$z^{-n} = \cos(-n\theta) + i\sin(-n\theta)$	1	
	$=\cos n\theta - i\sin n\theta$		
	$z^{n} + z^{-n} = \cos n\theta + i \sin n\theta + \cos n\theta - i \sin n\theta$	1	
	$=2\cos n\theta$	1	
6(c)(ii)	$\left[\left(z + \frac{1}{z} \right)^4 = z^4 + 4z^2 + 6 + \frac{4}{z^2} + \frac{1}{z^4} \right]$	1	
	$= \left(z^4 + \frac{1}{z^4}\right) + 4\left(z^2 + \frac{1}{z^2}\right) + 6$		
	$=2\cos 4\theta + 4(2\cos 2\theta) + 6$	1	
	$\left(z + \frac{1}{z}\right)^4 = \left(2\cos\theta\right)^4 = 16\cos^4\theta$		
	$\therefore 16\cos^4\theta = 2\cos 4\theta + 8\cos 2\theta + 6$	1	
	$\cos^4 \theta = \frac{1}{8} \cos 4\theta + \frac{1}{2} \cos 2\theta + \frac{3}{8}$		
6(c)(iii)	$\int_{0}^{\frac{\pi}{2}} \cos^{4} \theta d\theta = \int_{0}^{\frac{\pi}{2}} \frac{1}{8} \cos 4\theta + \frac{1}{2} \cos 2\theta + \frac{3}{8} d\theta$		
	$= \left[\frac{1}{8} \frac{\sin 4\theta}{4} + \frac{1}{2} \frac{\sin 2\theta}{2} + \frac{3}{8} \theta \right]_{0}^{\frac{\pi}{2}}$	1	
	$=\frac{1}{32}\sin 2\pi + \frac{1}{4}\sin \pi + \frac{3\pi}{16} - 0$		
	$=\frac{3\pi}{16}$	1	
	16	1	L

Question	Criteria	Marks	Bands
7(a)	Let roots be: $\alpha - d, \alpha, \alpha + d$	1	
	sum of roots: $3\alpha = -a$ $\Rightarrow \alpha = -\frac{a}{3}$	1	
	$\alpha = -\frac{a}{3} \text{ is a root to: } x^3 + ax^2 + bx + c = 0$	1	
	$\left(\left(-\frac{a}{3} \right)^3 + a \left(-\frac{a}{3} \right)^2 + b \left(-\frac{a}{3} \right) + c = 0$		
	$-\frac{a^3}{27} + \frac{a^3}{9} - \frac{ab}{3} + c = 0$		
	$-a^3 + 3a^3 - 9ab + 27c = 0$	1	
	$2a^3 - 9ab + 27c = 0$		
7(b)(i)	Consider the intersection of the two curves:		
	$y = \frac{c}{x^2}$		
	$\frac{x^2}{a^2} + \frac{c^4}{x^2b^2} = 1 x^4b^2 - x^2a^2b^2 + a^2c^4 = 0$	1	
	Solving for x^2 : $\Delta = a^4 b^4 - 4a^2 b^2 c^4$	1	
	for the roots to be real and distinct:		
	Δ>0	1	
	$a^4b^4 - 4a^2b^2c^4 > 0$		
	$a^2b^2 > 4c^2 \qquad or \qquad ab > 2c^2$		
	If $ab > 2c^2$, x^2 has two distinct values and hence x has 4 values		
	corresponding to 4 points of intersection.		
7(b)(ii)	$y = \frac{c^2}{x} xa\sin\theta - \frac{c^2}{x}b\cos\theta = (a^2 - b^2)\sin\theta\cos\theta$		
	$x^2 a \sin \theta - c^2 b \cos \theta = (a^2 - b^2) x \sin \theta \cos \theta$	1	
	$x^2 a \sin \theta - (a^2 - b^2) x \sin \theta \cos \theta - c^2 b \cos \theta = 0$		
	$\Delta = \left[\left(a^2 - b^2 \right)^2 \sin \theta \cos \theta \right]^2 + 4ac^2 b \cos \theta \sin \theta$	1	
	If $0 < \theta < \frac{\pi}{2}$, $0 < \sin \theta < 1$, $0 < \cos \theta < 1$, $a, b > 0$	1	
	$\therefore \Delta > 0$ and this gives two values for x.		

	·	т	7
7(b)(iii)	$x_1 + x_2 = \frac{2(a^2 - b^2)\sin\theta\cos\theta}{2a\sin\theta} = \frac{(a^2 - b^2)\sin\theta\cos\theta}{a\sin\theta}$ $\frac{x_1 + x_2}{2} = \frac{(a^2 - b^2)\sin\theta\cos\theta}{2a\sin\theta}$		
	$x_1 + x_2 = {2a\sin\theta} - {a\sin\theta}$		
	$\left \begin{array}{c} x_1 + x_2 \end{array} \right \left(a^2 - b^2 \right) \sin \theta \cos \theta$		
	$\frac{1}{2} = \frac{1}{2a\sin\theta}$	1	
	$x = \frac{\left(a^2 - b^2\right)\cos\theta}{2a} \tag{1}$	_	
	sub into normal to find y:		
	$a\frac{\left(a^2-b^2\right)\cos\theta}{2a}\sin\theta-yb\cos\theta=\left(a^2-b^2\right)\sin\theta\cos\theta$		
	$\frac{\left(a^2 - b^2\right)}{2}\sin\theta - yb = \left(a^2 - b^2\right)\sin\theta \qquad \cos\theta \neq 0$		
	$y = \frac{-\left(a^2 - b^2\right)}{2b}\sin\theta \qquad (2)$	1	
7(b)(iv)	Eliminate θ :		
	From (1) $\cos \theta = \frac{2ax}{a^2 - b^2}$,	
	From (2) $\sin \theta = -\frac{2by}{a^2 - b^2}$	1 ·	
	u - b	1	
	$\sin^2\theta + \cos^2\theta = 1$	_	
i	$\frac{4a^2x^2}{\left(a^2-b^2\right)^2} + \frac{4b^2y^2}{\left(a^2-b^2\right)^2} = 1$		
		1	
	x^2 y^2 -1		
	$\frac{x^2}{\left(\frac{a^2 - b^2}{2a}\right)^2} + \frac{y^2}{\left(\frac{a^2 - b^2}{2b}\right)^2} = 1$		

Question	Criteria	Marks	Bands
8(a)(i)	Domain: $e^x > 0$ for all x	2	~
	for $\cos^{-1}(e^x):-1 \le e^x \le 1$ only if $0 \le e^x \le 1$, i.e. if $x \le 0$.		
	Range: For this domain range will be: $0 \le y \le \frac{\pi}{2}$		
8(a)(ii)		2	
	limit at y = 1		
	₫ ^y ✓ shape		
	2		
	-6 -4 -2 0 2 4 6		
	-6 -4 -2 0 2 4 6		
	-2		
	-4		
	1		
8(a)(iii)	_	2	
[4 v		
	#		
	0		
	-6 -4 -2 0 2 4 6		
	shape (reciprocal of (ii))		
	snape (reciprocal of (II)) -4		
,			*****

04.7(2)		3	
8(b)(i)	prove true for $n=1$	3]
	$\therefore (1+\sqrt{2})^1 = 1+\sqrt{2} true \ where \ p_n = 1 \ and \ q_n = 1 $		
	assume true for $n = k$		
	$\therefore (1+\sqrt{2})^k = p_k + q_k\sqrt{2}$		
	prove true for $n = k + 1$		
	$\therefore (1+\sqrt{2})^{k+1} = (1+\sqrt{2})^k (1+\sqrt{2})^1$		
	$= (p_k + q_k \sqrt{2})(1 + \sqrt{2}) $ (by assumption above)		
	$= p_k + p_k \sqrt{2} + q_k \sqrt{2} + 2q_k$		
	$= (p_k + 2q_k) + (p_k + q_k)\sqrt{2}$		
	since p_k and q_k are integers		
	$\therefore p_k + 2q_k \text{ is an integer} = p_{k+1}$		
	$\therefore p_k + q_k \text{ is an integer} = q_{k+i}$		
	hence $(1+\sqrt{2})^{k+1} = p_{k+1} + q_{k+1}\sqrt{2}$		
	If true for $n = k$ and $n = k + 1$ and since true for $n = 1, 2, 3$		
	\therefore true for \forall n positive integers		
8(b)(ii)	$p_i^2 - 2q_i^2 = 1 - 2 \times 1^2 = -1 = (-1)^1$	2	
	If $p_k^2 - 2q_k^2 = (-1)^k$		
	then when $n = k + 1$		
	$(p_{k+1})^2 - (q_{k+1})^2 = (p_k + 2q_k)^2 - 2(p_k + q_k)^2$ (from above)		
	$= p_k^2 + 4p_kq_k + 4q_k^2 - 2p_k^2 - 4p_kq_k - 2q_k^2$		
	$=2q_k^2-p_k^2$		
	$= -1(p_k^2 - 2q_k^2)$		
	$=-1\times(-1)^k$		
	= (-1) ^{k+1}		
	if true for $n = k$ and $n = k + 1$		
	and since true for $n = 1, 2, 3$ $\therefore true for \forall n$ positive integers		
8(c)(i)	f(xa) = f(x) + f(a)	2	
	if $x = 1$ then $f(a) = f(1) + f(a) \Rightarrow f(1) = 0$		
	if $x = a$ then $f(a^2) = f(a) + f(a)$		
	$f(a^2) = 2f(a) \qquad \boxed{\checkmark}$		
	$\therefore 2f(-1) = f(-1^2) = f(1) = 0$		į
8(c)(ii)	since $2f(a) = f(a^2)$	2	
	$\therefore 2f(-a)) = f((-a))^2$		
	$=f(a^2)$		
ž	=2f(a)		
	$\sin ce \ 2f(a) = 2f(-a))$		Ì
	$\therefore f(a) = f(-a) even function \qquad \boxed{\checkmark}$		
	The state of the s		