Kincoppal-Rose Bay, School of the Sacred Heart HSC Mathematics Extension 2, Half Yearly Examination 2008

2008

HIGHER SCHOOL CERTIFICATE HALF YEARLY EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 90 minutes
- Write using black or blue pen
- · Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Start a new page for each question

Total marks - 60

- Attempt Questions 1 4
- All questions are of equal value

Kincoppal-Rose Bay, School of the Sacred Heart HSC Mathematics Extension 2, Half Yearly Examination 2008

Total Marks – 60 Attempt Questions 1-4 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

	Quest	tion 1 (15 marks) Use a SEPARATE writing booklet.	Marks
and the second s	(a)	Find the square roots of $5-12i$. Give your answers in the form $a+ib$	3
	(b)	Sketch on the Argand diagram the locus $ z-2 = z+2i $	1
3	(c)	Sketch the region in the Argand diagram that satisfies both conditions $-\frac{\dot{\pi}}{2} \le \arg(z-2) \le 0 \text{ and } \mathrm{Im}(z) \le -1$. 2
	(d)	Let $z=1-i$ and $w=-1+i\sqrt{3}$	
		(i) Find arg z and arg w	1
		(ii) Hence find arg(wz)	1
		(iii) Hence prove that $\sin \frac{5\pi}{12} = \frac{\sqrt{2}(1+\sqrt{3})}{4}$	2
}	(e)	(i) Let $z = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$. Find z^6 in simplest form.	1
J.		(ii) On the Argand diagram, plot and label all complex numbers that satisfy both the conditions $z^6 = 1$ and $Re(z) \le 0$	2

Question 1 continues on page 3

Question 1 (continued)

(f)

In the Argand diagram above, the two points A and C lie on the circumference of the circle with centre the origin and radius 1. They represent the complex numbers z_1 and z_2 respectively.

- (i) Copy the above diagram. Then mark on your diagram the position of the point 1 B that represents the complex number $z_1 + z_2$
- (\vec{i}). Explain why AC is perpendicular to OB.

Question 2 (15 marks) Use a SEPARATE writing booklet.

Marks

1

2

(a) The diagram shows the graph of y = f(x)

Draw separate one-third page sketches of the graphs of the following. You must indicate important features and the new coordinates of the points indicated as appropriate.

$$(i) y = |f(x)|$$

$$=f(|x|)$$

(iii)
$$y = \sqrt{f(x)}$$

(iv)
$$y = \int_{-\infty}^{\infty} \frac{1}{f(x)}$$

Question 2 continues on page 5

Sketch the graph of $y = x^3 - 12x$ (b)

- Use this graph, and techniques of calculus, to find the set of values of the real number k for which the equation $x^3 - 12x + k = 0$ has exactly one real root.
- Given $x^3 + y^3 = 1$, show that $\frac{dy}{dx} = -\left(\frac{x}{y}\right)^2$

- Determine the coordinates of any vertical and/or horizontal asymptotes of the graph $x^3 + y^3 = 1$.
- Sketch the graph of $x^3 + y^3 = 1$

0

Question 3 (15 marks) Use a SEPARATE writing booklet.

Marks

- Find the zeros of $P(x) = x^4 2x^2 3$
 - Over Q the rational numbers

Over C the complex numbers

- Given the polynomial $P(x) = x^3 5x + 3$ with roots α , β and γ find the:
 - cubic polynomial with integer coefficients whose roots are 3α , 3β and 3γ
 - the polynomial with rational coefficients whose roots are α^2 , β^2 and γ^2
 - The equation $x^3 + 4x + 3 = 0$ has roots α , β and γ . Evaluate

- What does your answer to part (ii) suggest about the roots to the polynomial * equation $x^3 + 4x + 3 = 0$?
- Express $\frac{2x^2 + 3x 7}{(x 5)(x^2 + 4)}$ as the sum of the partial fractions $\frac{A}{x 5} + \frac{Bx + C}{x^2 + 4}$

Kincoppal-Rose Bay, School of the Sacred Heart HSC Mathematics Extension 2, Half Yearly Examination 2008

Ouestion 4 (15 marks) Use a SEPARATE writing booklet.

Marks

AB and CD are tangents to both circles and they intersect at the point D. The tangent AB touches the smaller circle at R and the larger circle at Q. The tangent CD touches the two circles at P.

Copy the diagram into your examination booklet.

- Prove that $\angle RPQ$ is a right angle. Hint: assign pronumerals to appropriate angles to help you in your proof.
- Is quadrilateral RPSQ a cyclic quadrilateral? You must support your answer with geometric reasons.
- A sequence $u_1, u_2, u_3, ...$ is defined by $u_1 = 1, u_2 = 7$, and $u_n = 7u_{n-1} 12u_{n-2}$ for $n \ge 3$. (b) Use the method of Mathematical Induction to show that $u_n = 4^n - 3^n$ for $n \ge 1$
- Given that x = a is a root of multiplicity n of the polynomial (c) $P(x) = Q(x)(x-a)^n$, show that x = a is also a root of P'(x).
 - The equation $x^n + px q = 0$ has a double root.
 - (α) Show that $x^{n-1} = -\frac{p}{2}$
 - (β) Hence show that $\left(\frac{p}{n}\right)^n + \left(\frac{q}{n-1}\right)^{n-1} = 0$.

End of paper

Examiner: ND and BW

-7-

Mathematics Extension 2 HSC Half Yearly Exam Solutions 2008

Question	Criteria	Marks	Bands
1(a)	Let $z = x + iy$		
	$z^2 = 5 - 12i = (x + iy)^2$		
	$x^2 - y^2 = 5$ and $2xy = -12$. 1	
	by inspection:	1 ,	
	$x = \pm 3$ $y = \mp 2$ since $x \in \mathbb{R}$	1	
	\therefore square roots are $3-2i, -3+2i$	1	
1(b)	z-2 = z+2i	1	
	$(x-2)^2 + y^2 = x^2 + (y+2)^{2x}$		
	A 12 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		
	y = -x		
ĺ			
ļ	→ Re		
.	y = -x		
Í		- 1	
	,	_	
.	, 4		
l(c)		2	
·	Im 🛉		
ĺ	' '		
	2 → Re		
	-1		
	Seminarian managamental mental men	ļ	
(d)(i)		4.6-	
(a)(1)	$arg(z) = \frac{-\pi}{4}$	1	
I	$arar(ru) = \frac{2\pi}{2}$		
	$\arg(w) = \frac{2\pi}{3}$ $\arg(zw) = \arg w + \arg z = \frac{-\pi}{4} + \frac{2\pi}{3} = \frac{5\pi}{12}$	1	

Kincoppal-Rose Bay, School of the Sacred Heart HSC Mathematics Extension 2 Half Yearly Exam, Solutions 2008 1(d)(iii) $wz = (\sqrt{3} - 1) + i(\sqrt{3} + 1)$ Using part (ii) $arg(zw) = \frac{5\pi}{12}$ $|z| = \sqrt{(1)^2 + (-1)^2} = \sqrt{2}$ 1 $|w| = \sqrt{(-1)^2 + (\sqrt{3})^2} = 2$ 1 1(e)(i) $z^6 = \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^6$ $= (\cos 6\left(\frac{\pi}{3}\right) + i\sin 6\left(\frac{\pi}{3}\right))$ $= (\cos 2\pi + i\sin 2\pi)$ =1 1(e)(ii) $z_0 = 0$ $z_{\rm i} = cis\frac{\pi}{3}$ Im♠ 1 $z_3 = cis\pi = -1$ $z_4 = cis \frac{4\pi}{3} = cis \left(\frac{-\pi}{3}\right)$ $z_5 = cis \frac{5\pi}{3} = cis \left(\frac{-2\pi}{3}\right)$ Re 1 ĭ 1(f)(i) ō Re OABC is a parallelogram.
OA=OC (equal radii of circle) 1(f)(ii) 1 :. OABC is a rhombus. By definition of a rhombus the diagonals bisect each other at right angles. $: OB \perp AC$

0	7 %		
Question 2(a)(i)	Criteria	Marks	Bands
	(-2,2) $(-1,1)$ $(1,1)$ 2 4 2 4 4 3 4 4 4 4 4 4 4 4 4 4	1	
2(a)(ii) .	(-1,1) $(1,1)$ 2 2 4 2 4 4 4 4 4 4 4 4 4 4	2	

Kincoppal-Rose Bay, School of the Sacred Heart HSC Mathematics Extension 2 Half Yearly Exam, Solutions 2008

HSC Mathe	ematics Extension 2 Half Yearly Exam, Solutions 2008			
2(b)(ii)	$y' = 3x^2 - 12$			
	$3x^2 - 12 = 0$			
	$x = \pm \dot{2}$			
	$y = \pm 16$			
	stationary point at $(-2,16)$ and $(2,-16)$	1		
	$\therefore k > 16 \text{ or } k < -16$	1		
2(c)(i)	$x^3 + y^3 = 1$			
	$3x^2 + 3y^2 \frac{dy}{dx} = 0$	1		
	$\frac{dy}{dx} = -\frac{3x^2}{3y^2} = -\frac{x^2}{y^2}$			
2(c)(ii)	$\frac{dy}{dx} = -\left(\frac{x}{y}\right)^2 \qquad \frac{dy}{dx} = -\left(\frac{x}{y}\right)^2$	2		
	$vertical \Rightarrow y = 0 \qquad horizontal \Rightarrow x = 0$			
	$\therefore (1,0) \qquad \qquad \land (0,1)$,	-	
L			100	
[2(c)(iii)	VA	1		
2(c)(iii)	$y = -x$ 2 $x^3 + y^3 = 1$	1		
2(e)(iii)		1		
2(c)(iii)	2^{-1} 1 $x^3 + y^3 = 1$	1	2	
2(0)(iii)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S. S	
2(0)(iii)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	2	
2(0)(iii)	$x^{3}+y^{3}=1$ $x^{3}+y^{3}=1$ $x^{2}+y^{3}=1$ $x^{3}+y^{3}=1$ $x^{2}+y^{3}=1$ $x^{3}+y^{3}=1$ $x^{3}+y^{3}=$	1	*	
2(0)(iii)	$x^{3}+y^{3}=1$ $x^{3}+y^{3}=$	1	2	
2(0)(iii)	curve is symmetric about $y = x$, since the transformation $y \leftrightarrow x$ leaves the Cartesian equation of the curve unchanged. $x^3 + y^3 = 1 \Rightarrow y = -x \left(1 - \frac{1}{x^3}\right)^{\frac{1}{3}}$. By expansion for the large	1	2	
2(0)(iii)	$x^{3}+y^{3}=1$ $x^{3}+y^{3}=$	1	2	
2(o)(iii)	curve is symmetric about $y=x$, since the transformation $y\leftrightarrow x$ leaves the Cartesian equation of the curve unchanged. $x^3+y^3=1 \Rightarrow y=-x\left(1-\frac{1}{x^3}\right)^{\frac{1}{3}}$. By expansion for the large values of x we have	1	The state of the s	

Kincoppal-Rose Bay, School of the Sacred Heart HSC Mathematics Extension 2 Half Yearly Exam, Solutions 2008

Question	Criteria	Marks	Bands
3(a)(i)	$P(x) = (x^2 - 3)(x^2 + 1)$	1	
	no zeros over rationals Q	*	
2(-)(!!)			
3(a)(ii)	$P(x) = (x - \sqrt{3})(x - \sqrt{3})(x+i)(x-i)$	1	
	$x=\pm\sqrt{3},\pm i$		
3(b)(i)	$x = \pm\sqrt{3}, \pm t$ $\left(\frac{x}{3}\right)^3 - 5\left(\frac{x}{3}\right) + 3 = 0$	1	
•	$\left \frac{x^3}{27} - \frac{5x}{3} + 3 = 0 \right $		
	$x^3 - 45x + 81 = 0$	1	
3(b)(ii)	$\left(\sqrt{x}\right)^3 - 5\sqrt{x} + 3 = 0$		
	$x\sqrt{x} - 5\sqrt{x} = -3$		
	$\sqrt{x}(x-5) = -3$	1	
	$x(x^2 - 10x + 25) = 9$		
	, · · · · · · · · · · · · · · · · · · ·	1	
3(c)(i)	$x^{3} - 10x^{2} + 25x - 9 = 0$ $\alpha + \beta + \gamma = 0$	1	,
3(c)(ii)	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \alpha\gamma)$	1	
5(6)(11)			
	=0-2(4)	1	
3(e)(iii)	$= -8$ $\alpha^3 + 4\alpha + 3 = 0$	 ` 	
	$\beta^3 + 4\beta + 3 = 0$		
	$\dot{y}^3 + 4g + 3 = 0$	-	
	$\therefore \alpha^3 + \beta^3 + \gamma^3 = -4(\alpha + \beta + \gamma) - 9$	1	
	=-4(0)-9		
	=-9	1	
3(c)(iv)	Since the sum of the squares of the roots to the polynomial is -8, (i.e. negative) there must be a pair of complex conjugate roots.	1	
3(d)	$2x^{2} + 3x - 7 = A(x^{2} + 4) + (Bx + C)(x - 5)$		
	x = 5 $50 + 15 - 7 = 29 A$		
	58 = 29 A	1	
	A = 2		
	x = 0 $-7 = 8 - 5(C)$]
	-15 = -5C ∴ C = 3	1	
	x=1 $2+3-7=2(5)+(-4)(B+3)$		
	-2=-4B-2		
	$\therefore B = 0$	1	
	$\therefore \frac{2x^2 + 3x - 7}{(x - 5)(x^2 + 4)} = \frac{2}{x - 5} + \frac{3}{x^2 + 4}$		
	$(x-5)(x^2+4)$ $x-5$ x^2+4		

Question	Criteria	Marks	Bands
4(a)(i)	,		
	Let $\angle DRP = \alpha$ $PD = RD \qquad \text{(tangents from external point } D \text{ are equal)}$	•	
	.: ARDP is isosceles	Ĭ	
	$\angle DRP = \angle DPR = \alpha$ (equal base angles of isosceles triangle)	4	
	$let \angle DQP = \beta$		
	PD = DQ (tangents from external point D are equal) $\therefore \Delta DPQ$ is isosceles		
	$\angle DPQ = \angle DQP = \beta$ (equal base angles of isosceles triangle)	1	
	$\angle RPQ = \alpha + \beta$	1	
	$2\alpha + 2\beta = 180^{\circ}$ (angle sum of $\triangle RPQ$)	χ.	
4(a)(ii)	$\therefore \alpha + \beta = 90^{\circ}$ angle between a tangent and the chord		
	$\angle DQP = \angle QSP = \beta$ of contact is equal to the angle in the alternate segment	1	
	$\angle QRP = \alpha$		
	$\angle QRP + \angle QSP = \alpha + \beta$		
	but α+β=90°		
	∴ RPSQ is not a cyclic quadrilateral since the opposite angles are not supplementary	1	
<u> </u>			

Kinsoppal-Rose Bay, School of the Sacred Heart

4(b)	$n=1$ $u_1=4-3=1$				
-(-)	$n = 2 u_2 = 4^2 - 3^2 = 16 - 9 = 7$	1			
	$\therefore \text{ true for } n = 1, 2$				
	$\dots \text{ true for } n=1,2$				
	Assume true for $n = k$ and $n = k + 1$				
	$u_k = 4^k - 3^k$				
	$u_{k+1} = 4^{k+1} - 3^{k+1}$				
	,				
	Prove true for $n = k + 2$	1			
	i.e. $u_{k+2} = 4^{k+2} - 3^{k+2}$				
	*				
	$u_{k+2} = 7u_{k+1} - 12u_k$				
	$=7(4^{k+1}-3^{k+1})-12(4^k-3^k)$	1			
	$=28.4^k - 21.3^k - 12.4^k + 12.3^k$				
	$=16.4^k - 9.3^k$				
	$=4^2.4^k-3^23.k$				
	$=4^{k+2}-3^{k+2}$	1			
	$\therefore \text{ true for } n = k + 2$				
			1		
	Now we have proved it true for $n = 1, 2$:		•	
	by step 3, it is true for $n=1+2$ i.e. $n=3$, and so on for all integers				
4(c)(i)	$P'(x) = Q(x) \times n(x-a)^{n-1} + Q'(x)(x-a)^{h}$	1			
	$= (x-a)^{n-1} \{ nQ(x) + Q'(x)(x-a) \}$				
	$\therefore x = a \text{ is also a root of } P^1(x)$	1			
4(c)(ii)	Let $P(x) = x^n + px - q$.	1		 	
(α)	Then $P'(x) = nx^{n-1} + p$.				
	1		1		
4(c)(ii)	Hence $P'(x) \Rightarrow x^{n-1} = -p/n$. α is a double root of $P(x) = 0$ if and only if $P(\alpha) = 0$ and				
(β)	$P'(\alpha) = 0$, but $P''(\alpha) \neq 0$		·		
	Furthermore, $P(x) = 0 \Leftrightarrow x(x^{n-1} + p) = q$.	1			
	Substituting $x^{n-1} = -\frac{p}{n}$, we obtain	ļ			
	$\left(x\left(\frac{-p}{n}+p\right)=q\right) \Rightarrow x=\frac{nq}{(n-1)p}$		-		
		1			
	But $x^{n-1} = -\frac{p}{n}$.				
	$\begin{cases} \frac{nq}{(n-1)p} \end{pmatrix}^{n-1} = \frac{-p}{n} \implies \left(\frac{n}{p}\right)^{n-1} \left(\frac{q}{(n-1)}\right)^{n-1} = -\frac{p}{n}.$ $\therefore \left(\frac{p}{n}\right)^{n} + \left(\frac{q}{n-1}\right)^{n-1} = 0.$				
	$\left \therefore \left(\frac{p}{n} \right)^n + \left(\frac{q}{n-1} \right)^{n-1} \right = 0.$	1			
	\ \alpha \ \ \alp	1	ı		