

2010 HSC Course Task 3

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 55 minutes
- Write using black or blue pen
- Board-approved calculators may be used.
- Start a new writing booklet for each question
- All necessary working should be shown in every question
- Marks may be deducted for carelessly arranged work

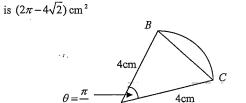
Total marks - 44

• Attempt Questions 1 - 3

Kincoppal-Rose Bay, School of the Sacred Heart HSC Mathematics Task 3, May 2010

Question 1 (12	2 marks) Start a New Page	Marks
(a) Evalua	$\lim_{x \to 0} \frac{3\sin x}{7x}$	1
(b) Change	e 1.324 radians into degrees to the nearest minute.	2
(c) A circu of the c	alar disc has area $A = 16\pi$ cm ² . A sector, with area 2π cm ² , is cut out disc.	
(i)	Show that the sector has radius = 4 cm and angle $\theta = \frac{\pi}{4}$ radians.	2

Show that the exact area of the minor segment cut off by the chord BC



- (d) Consider the function $y = \frac{1}{2} \sin 2x$.
 - (i) State the period of the graph.

1

2

1

2

For parts (ii) and (iii) use the extra sheet provided.

- ii) Sketch the graph for the domain $0 \le x \le 2\pi$.
- (iii) How many solutions does the equation $\frac{1}{2}\sin 2x x^2 = 0$ have in the domain $0 \le x \le 2\pi$.

 Justify your answer.
- (iv) Use your graph to find any solution(s), correct to 1 decimal place.

End of Question 1

Examiners: GC/ND

2

Question 2 (14 marks) Start a New Page

Marks

(a) Differentiate

(i)
$$-\sin(3-x^2)$$

2

(iii)
$$\ln(\cos 5x)$$

2

(iii)
$$e^{2x} \tan x$$

(b) Find the exact value of:

$$\int_0^{\frac{\pi}{3}} (\sin 3x - x) dx$$

 $(\sin 3x - x)dx$

(c) (i) Use a trigonometric identity to show that
$$\int \tan^2 x \, dx = \tan x - x + c$$

(ii) The curve $y = \tan x$, between x = 0 and $x = \frac{\pi}{4}$, is rotated about the x - axis. Using the result in part (i), find the volume of the resulting solid of revolution. 3

End of Question 2

Kincoppal-Rose Bay, School of the Sacred Heart HSC Mathematics Task 3, May 2010

Questio	n 3 (18 marks) Start a New Page	Marks
(a)	Find the 75 th term of the series $0.3 + 0.7 + 1.1 + 1.5 + \dots$	2
(b)	Find the first positive term of the series $-125-121-117-113$	2
	-125-121-117-113	2
(c)	How many terms must be added in the series	
	5+11+17+23+	
	to make the sum 208?	3
(d)	The 8 th term of an arithmetic series is 44 and the sum of the first 21 terms is 1365. Find the sum of 37 terms,	. 4
(e)	If $17 + x + 153 + \dots$ is a geometric series, find x.	2
(f)	Find the first value of n for which the terms of the series	
	$\frac{1}{7} + 1 + 7 + \dots$ exceed 2000.	2
(g	Evaluate the series $\frac{3}{2} + 4\frac{1}{2} + 13\frac{1}{2} + \dots + 364\frac{1}{2}$	3

End of Task

KRR - TASK3 - 2010 SOLUTIONS

KRB - TASK3 - 2010 SOLUTIONS		
Question 1 12 Marks	Criteria	Marks
1(a)	$\frac{3}{7}$	1
1(b)	$1.324 \times \frac{180}{\pi}$	1 .
	= 75°52′	1
1(c)(i)	$\pi r^2 = 16\pi \qquad \therefore r = 4$	1
	$\frac{1}{2}(4)^2\theta = 2\pi \qquad \therefore \theta = \frac{\pi}{4}$	1
1(c)(ii)	$Area = \frac{1}{2} (4)^2 \left[\frac{\pi}{4} - \sin \frac{\pi}{4} \right]$	1
	$=2\pi-8\sin\frac{\pi}{4}$	
	$=2\pi-8\times\frac{1}{\sqrt{2}}=2\pi-4\sqrt{2}$	1
1(d)(i)	Period = π	1
1(d)(ii)	0.5 	2
(iii) (iv)	Two solution as the graphs intersect at only one point in the given domain. $x = 0 or x = 0.6 - 0.8$	1

Question 2 14 Marks	Criteria	Marks
2(a)(i)	$-\cos(3-x^2)\times(-2x)$	1
	$=2x\cos(3-x^2)$	1
2(a)(ii)	$\frac{1}{\cos 5x} \times (-5\sin 5x)$	1
	$= \frac{-5\sin 5x}{\cos 5x}$ $OR (= -5\tan 5x)$	1 .
2(a)(iii)	$2e^{2x}\tan x + e^{2x}\sec^2 x$	1
	$=e^{2x}(2\tan x + \sec^2 x)$	1
2(b)	$\left[\frac{-\cos 3x}{3} - \frac{x^2}{2}\right]_0^{\frac{\pi}{3}}$	1
	$= (\frac{-\cos \pi}{3} - \frac{\pi^2}{18}) - (\frac{-\cos 0}{3} - 0)$	1
	$= \frac{1}{3} - \frac{\pi^2}{2} + \frac{1}{3} + 0$ $= \frac{2}{3} - \frac{\pi^2}{18}$	1
2(c)(i)	$\tan^2 x = -1 + \sec^2 x$	1
	$\int \tan^2 x dx = \int (-1 + \sec^2 x) dx$ $= -x + \tan x + c$	1
2(c)(ii)	$\pi \int_0^{\frac{\pi}{4}} \tan^2 x dx = \pi \left[\tan x - x \right]_0^{\frac{\pi}{4}}$	1
	$= \pi \left[\tan \frac{\pi}{4} - \frac{\pi}{4} \right] - \pi \left[\tan 0 - 0 \right]$	1
	$=\pi(1-\frac{\pi}{4}) units^3$	1

Question 3	Criteria	Marks
18 Marks		
3(a)	$\dot{d} = 0.4, a = 0.3$	1
	$T_{75} = 0.3 + 74 \times 0.4$	1
	= 29.9	
3(b)	d = 4, a = -125	
	$T_n = -125 + (n-1) \times 4 > 0$	1
	4n-129>0	
	$n > 32\frac{1}{4} \therefore n = 33$	
	$T_{33} = 3$	1
3(c)	d = 6, a = 5	
	$S_n = 208 = \frac{n}{2} [10 + (n-1) \times 6]$	1
	416 = n[6n+4]	
	$6n^2 + 4n - 416 = 0$	1
	$3n^2 + 2n - 208 = 0$	
	$(3n+26)(n-8) = 0 : n = -\frac{26}{8}(reject)$	
	n=8	1
3(d)	$S_{21} = \frac{21}{2} [2a + 20d] = 1365$	
	$42a + 420d = 2730, T_8 = a + 7d = 44$	1
	42a + 294d = 1848	
	∴126 <i>d</i> = 882	
	$\therefore d = 7$	1
	$a+7\times 7=44$	
	$\therefore a = -5 and d = 7$	1
	$S_{37} = \frac{37}{2} [2(-5) + 36 \times 7] = 4477$	1
3(e)	$\frac{x}{17} = \frac{153}{x}$	1
	$x^2 = 2601$ $x = \pm 51$	1
		

Examiner GC May2010

Question 3 Continued	Criteria	Marks
3(f)	$\frac{1}{7}(7)^{n-1} > 2000$ $7^{n-1} > 14000$ $(n-1)\ln 7 > \ln 14000$ $n = \frac{\ln 14000}{\ln 7} + 1$	1
	$n = \frac{\ln 7}{\ln 7}$ $n > 5.906$ $n = 6$	1
3(g)	$a = \frac{3}{2}, r = 3, T_n = 364 \frac{1}{2}$ $\frac{3}{2} \times 3^{n-1} = 364 \frac{1}{2}$	
	$3^{n-1} = 243$ $(n-1)\ln 3 = \ln 243$	1
	$n = \frac{\ln 243}{\ln 3} + 1$ $\therefore n = 6$	1
	$\therefore S_6 = \frac{\frac{3}{2} \left[3^6 - 1 \right]}{3 - 1} = 546$	1

Examiner GC May2010