Topic 7. Graphs.

Level 2.

Problem GRA2_01.

For $n \ge 2$, an even positive integer, sketch the graphs of a) $y = x^n$; b) $y = x^{-n}$, c) $y = x^{\frac{1}{n}}$; d) $y = x^{-1/n}$.

Solution:

a)

$$y = x^n$$
, $n = 2k$, $k = 1,2,...$

$$\frac{dy}{dx} = 2kx^{2k-1}$$

Sign of $\frac{dy}{dx}$

The minimum turning point is (0, 0).

 $(-x)^{2k} = x^{2k} \implies$ the graph $y = x^{2k}$ is the graph of an even function \implies the graph $y = x^{2k}$ is symmetric about y-axis.

b)

 $y = x^{-n}, n = 2k, k = 1,2,...$

Domain $\{x: x \neq 0\}$

$$\frac{dy}{dx} = -2kx^{-2k-1}$$

Sign of $\frac{dy}{dx}$

 $y \to \infty$ as $x \to 0 \Rightarrow$ the line x = 0 is a vertical asymptote.

 $y \to 0$ as $x \to \infty \Rightarrow$ the line y = 0 is a horizontal asymptote.

 $(-x)^{-2k} = x^{-2k} \implies$ the function $y = x^{-2k}$ is even and the graph $y = x^{-2k}$ is symmetric about yaxis.

c) у 2.5 2 1.5 $y = x^{1/2k}, k = 1,2, ...$ 1 0.5 0

$$y = x^{\frac{1}{n}}, n = 2k, k = 1,2,...$$

Domain $\{x: x \ge 0\}$

$$\frac{dy}{dx} = \frac{1}{n} x^{\frac{1}{n} - 1}$$

 $\frac{dy}{dx}$ is not defined at x = 0.

 $\rightarrow \infty$ as $x \rightarrow 0^+ \Rightarrow$ the tangent line at the critical point (0, 0) is vertical.

d)

$$y = x^{-\frac{1}{n}}, n = 2k, k = 1,2,...$$

Domain $\{x: x > 0\}$

 $y \to +\infty$ as $x \to 0^+ \Rightarrow$ the line x = 0 is a vertical asymptote.

 $y \to 0^+$ as $x \to +\infty \Rightarrow$ the line y = 0 is a horizontal asymptote.

Problem GRA2_02.

For $n \ge 3$, an odd positive integer, sketch the graphs of a) $y = x^n$; b) $y = x^{-n}$, c) $y = x^{\sqrt{n}}$; d) $y = x^{-1/n}$.

$$y = x^n$$
, $n = 2k + 1$, $k = 0,1,...$

$$\frac{dy}{dx} = nx^{n-1} \equiv (2k+1)x^{2k}$$

Sign of
$$\frac{dy}{dx}$$

Clearly the curve is symmetric about the point (0, 0) as the transformation $y \to -y$ and $x \to -x$ leaves the Cartesian equation of the curve unchanged.

$$y = x^{-n}$$
, $n = 2k + 1$, $k = 0,1,...$

Domain $\{x : x \neq 0\}$

As $x \to 0^-$, $y \to -\infty$, and as $x \to 0^+$, $y \to +\infty \Longrightarrow$ the line x = 0 is a vertical asymptote.

As $x \to \infty$, $y \to 0 \Rightarrow$ the line y = 0 is a horizontal asymptote.

Clearly the curve is symmetric about the point (0, 0) as the transformation $y \to -y$ and $x \to -x$ leaves the Cartesian equation of the curve unchanged.

$$y = x^{\frac{1}{n}}, n = 2k + 1, k = 0,1,...$$

$$\frac{dy}{dx} = \frac{1}{n} x^{\frac{1}{n-1}}$$

 $\frac{dy}{dx}$ is not defined at x = 0.

 \Rightarrow (0, 0) is a critical point.

$$\frac{dy}{dx} \to \infty \text{ as } x \to 0 \Rightarrow \text{ the tangent line at } (0, 0) \text{ is vertical.}$$

Clearly the curve is symmetric about the point (0, 0) as the transformation $y \rightarrow -y$ and $x \rightarrow -x$ leaves the Cartesian equation of the curve unchanged d)

$$y = x^{-\frac{1}{n}}, n = 2k + 1, k = 0,1,...$$

Domain $\{x: x \neq 0\}$

As $x \to 0^-$, $y \to -\infty$, and as $x \to 0^+$, $y \to +\infty \Rightarrow$ the line x = 0 is a vertical asymptote.

As $x \to \infty$, $y \to 0 \Rightarrow$ the line y = 0 is a horizontal asymptote.

Clearly the curve is symmetric about the point (0, 0) as the transformation $y \rightarrow -y$ and $x \rightarrow -x$ leaves the Cartesian equation of the curve unchanged.

Problem GRA2_03.

Sketch (showing critical points) the graph of $y = x(2 + \sqrt{x})$.

Solution:

$$y = x(2 + \sqrt{x})$$

Domain $\{x: x \ge 0\}$.

Domain
$$\{x : x \ge 0\}$$
.

$$\frac{dy}{dx} = 2 + \frac{3}{2}\sqrt{x}, \quad x > 0. \qquad \frac{dy}{dx} \to 2 \text{ as } x \to 0^+ \implies$$

the tangent line at the critical point (0, 0) is y = 2x.

$$y = x(2 + \sqrt{x})$$

Problem GRA2_04.

Sketch (showing critical points) the graph of y = x + |x|.

Solution:

$$y = x + |x|$$

$$y = x + |x|$$

$$y = \begin{bmatrix} 2x, & x \ge 0 & \frac{dy}{dx} = \begin{bmatrix} 2, & x > 0 \\ 0, & x < 0 & \frac{dy}{dx} \end{bmatrix}$$

$$y = \begin{bmatrix} 2x, & -1 & \frac{3y}{dx} = \\ 0, & x < 0 \end{bmatrix} = \begin{bmatrix} 0, & x < 0 \\ 0, & x < 0 \end{bmatrix}$$

$$\frac{dy}{dx} \to 2 \text{ as } x \to 0^+ \quad \frac{dy}{dx} \to 0 \text{ as } x \to 0^-$$

$$\Rightarrow \frac{dy}{dx}$$
 is not defined at $x = 0$, and $(0, 0)$ is a critical point.

Problem GRA2_05.

Sketch (showing critical points) the graph of y = |x| - |x - 2|.

$$y = |x| - |x - 2|$$

$$|x| = \begin{bmatrix} x, & x \ge 0 \\ -x, & x < 0 \end{bmatrix}, \quad |x - 2| = \begin{bmatrix} x - 2, & x \ge 2 \\ -x + 2, & x < 2 \end{bmatrix}$$

if
$$x \ge 2$$
, $y = x - x - 2 = 2$

if
$$2 > x \ge 0$$
, $y = x + x - 2 = 2x - 2$

if
$$x < 0$$
, $y = -x + x - 2 = -2$

if
$$x < 0$$
, $y = -x + x - 2 = -2$

$$\Rightarrow y = \begin{bmatrix} 2, & x \ge 2 \\ 2x - 2, & 2 > x \ge 0 \\ -2, & x < 0 \end{bmatrix} \qquad \frac{dy}{dx} = \begin{bmatrix} 0, & x > 2 \\ 2, & 0 < x < 2 \\ 0, & x < 0 \end{bmatrix}$$

$$\frac{dy}{dx} \to 0$$
 as $x \to 2^+$ $\frac{dy}{dx} \to 2$ as $x \to 2^-$

$$\Rightarrow \frac{dy}{dx}$$
 is not defined at $x = 2$, and $(2, 2)$ is a critical point.

$$\frac{dy}{dx} \to 2 \text{ as } x \to 0^+ \quad \frac{dy}{dx} \to 0 \text{ as } x \to 0^-$$

$$\Rightarrow \frac{dy}{dx}$$
 is not defined at $x = 0$, and $(0, -2)$ is a critical point.

Problem GRA2 06.

Use the graph of $f(x) = 4 - x^2$ (an even function) to sketch (showing critical points) the graph of y = |f(x)|.

Solution:

 $f(x) = 4 - x^2 \Rightarrow f(-x) = 4 - (-x)^2 = 4 - x^2 \Rightarrow f(-x) = f(x) \Rightarrow \text{ the graph of } y = f(x) \text{ is}$ symmetric about the y-axis.

$$y = |4 - x^2| = \begin{bmatrix} 4 - x^2, & 4 - x^2 \ge 0\\ x^2 - 4, & 4 - x^2 < 0 \end{bmatrix}$$

The sections of $y = 4 - x^2$ which lie below the x-axis are reflected in the x-axis. The graph of $y = |4 - x^2|$ is also symmetric about the y-axis, as $|4 - (-x)^2| = |4 - x^2|$.

$$y = |4 - x^{2}| = \begin{bmatrix} x^{2} - 4, & x < -2 \\ 4 - x^{2}, & -2 \le x < 2 \\ x^{2} - 4, & x \ge 2 \end{bmatrix} \qquad \frac{dy}{dx} = \begin{bmatrix} 2x, & x < -2 \\ -2x, & -2 < x < 2 \\ 2x, & x > 2 \end{bmatrix}$$

 $\frac{dy}{dx} \to 4$ as $x \to 2^+$, $\frac{dy}{dx} \to -4$ as $x \to 2^- \Rightarrow \frac{dy}{dx}$ is not defined at x = 2, and (2, 0) is a critical point. Hence the symmetric about the y-axis point (-2,0) is also critical.

Problem GRA2_07.

Use the graph y = x(x+2) to sketch showing critical points the graph of y = |x(x+2)|.

Solution:

Those sections of y = x(x+2) which lie below x-axis are reflected in the x-axis.

Those sections of
$$y = x(x+2)$$
 which he below x-axis are removed by
$$y = |x(x+2)| = \begin{bmatrix} x(x+2), & x < -2 \\ -x(x+2), & -2 \le x < 0 \\ x(x+2), & 0 \le x \end{bmatrix} = \begin{bmatrix} 2x+2, & x < -2 \\ -2x-2, & -2 < x < 0 \\ 2x+2, & 0 < x \end{bmatrix}$$

$$\frac{dy}{dx} \to -2 \text{ as } x \to -2^-, \quad \frac{dy}{dx} \to 2 \text{ as } x \to -2^+ \Rightarrow \frac{dy}{dx}$$

$$\frac{dy}{dx} \to -2$$
 as $x \to -2^-$, $\frac{dy}{dx} \to 2$ as $x \to -2^+ \Rightarrow \frac{dy}{dx}$

is not defined at x = -2, and (-2, 0) is a critical point

$$\frac{dy}{dx} \to -2 \text{ as } x \to 0^-, \quad \frac{dy}{dx} \to 2 \text{ as } x \to 0^+ \quad \Rightarrow \frac{dy}{dx}$$

is not defined at x = 0, and (0, 0) is a critical point.

Problem GRA2_08.

Sketch the graph of |x| + |y| = 1.

$$|x| + |y| = 1$$

Clearly
$$|x|, |y| = 1$$

Clearly $|x|, |y| \ge 0 \Rightarrow \text{domain } \{x : -1 \le x \le 1\}, \text{ range } \{y : -1 \le y \le 1\}.$
If $y \ge 0$, then $y = \begin{bmatrix} 1 + x, -1 \le x < 0 \\ 1 - x, 0 \le x \le 1 \end{bmatrix}, \frac{dy}{dx} = \begin{bmatrix} 1, -1 < x < 0 \\ -1, 0 < x < 1 \end{bmatrix}$

$$\Rightarrow \frac{dy}{dx} \to +1 \text{ as } x \to 0^- \text{ and } \frac{dy}{dx} \to -1 \text{ as } x \to 0^+$$

$$\Rightarrow \frac{dy}{dx}$$
 is not defined at $x = 0$, and $(0, 1)$ is a critical point.

The curve is symmetric about x-axis as the transformation $y \rightarrow -y$ leaves the Cartesian equation of the curve unchanged. Hence the symmetric point (0, -1) is also critical.

If
$$y \le 0$$
, then $y = \begin{bmatrix} -1 - x, -1 \le x < 0 \\ -1 + x, 0 \le x \le 1 \end{bmatrix}$.

The curve is also symmetric about the line y = x as the transformation $(x, y) \rightarrow (y, x)$ leaves the Cartesian equation of the curve unchanged. Hence the points (1, 0) and (-1, 0) is also critical.

Problem GRA2_09.

Use the graph of $y = \cos x$ to sketch the graph of $y = \cos(x - \frac{\pi}{2})$.

The graph $y = \cos(x - \frac{\pi}{2})$ is obtained by translating the graph $y = \cos x$ through $\frac{\pi}{2}$ units to the right.

Problem GRA2_10.

Use the graph of $y = \sin^{-1} x$ to sketch the graph of: $y = \sin^{-1} x - \frac{\pi}{2}$.

Solution:

The graph $y = \sin^{-1} x - \frac{\pi}{2}$ is obtained by translating the graph $y = \sin^{-1} x$ through $\frac{\pi}{2}$ units down.

Problem GRA2_11.

Use the graphs of $y = \ln x$ and $y = \frac{1}{x}$ to sketch the graph of $y = \ln x + \frac{1}{x}$.

The ordinates of the graph $y = \ln x + \frac{1}{x}$ are obtained by summing the ordinates of the graphs $y = \ln x$ and $y = \frac{1}{x}$.

Problem GRA2_12.

Use the graphs of y = x and $y = e^{-x}$ to sketch the graph of $y = x - e^{-x}$.

Solution:

In order to sketch the graph of $y = x - e^{-x}$ we apply the procedure of subtraction of ordinates of the graphs y = x and $y = e^{-x}$.

Problem GRA2_13.

Sketch the graph of $y = x^2 + \frac{1}{x^2}$.

The ordinates of the graph $y = x^2 + \frac{1}{x^2}$ are obtained by summing the ordinates of the graphs $y = x^2$ and $y = \frac{1}{x^2}$. Clearly the function $x^2 + \frac{1}{x^2}$ is even, and hence the graph $y = x^2 + \frac{1}{x^2}$ is symmetric about y-axis.

Problem GRA2_14.

Sketch the graph of $y = x^2 - \frac{1}{x}$.

Solution:

The ordinates of the graph $y = x^2 - \frac{1}{x}$ are obtained by applying the procedure of subtraction of ordinates of the graphs $y = x^2$ and $y = \frac{1}{x}$.

Problem GRA2_15.

Sketch the graph of $y = \cos x + \sin x$.

$$y = \cos x + \sin x = \sqrt{2} \left(\cos \frac{\pi}{4} \cos x + \sin \frac{\pi}{4} \sin x\right) = \sqrt{2} \cos \left(x - \frac{\pi}{4}\right) \Rightarrow y = \sqrt{2} \cos \left(x - \frac{\pi}{4}\right).$$

The graph $y = \cos\left(x - \frac{\pi}{4}\right)$ is obtained by translating the graph $y = \cos x$ through $\frac{\pi}{4}$ units to the right.

right. The graph $y = \sqrt{2}\cos\left(x - \frac{\pi}{4}\right)$ is obtained by enlarging $y = \cos\left(x - \frac{\pi}{4}\right)$ by a factor $\sqrt{2}$ in the direction parallel to the *y*-axis.

Problem GRA2_16.

Sketch the graph of $y = \frac{1}{2} (e^x - e^{-x})$.

Solution:

The graph of $y = e^x - e^{-x}$ is obtained by subtraction of ordinates of the graphs $y = e^x$ and $y = e^{-x}$.

The graph $y = \frac{1}{2}(e^x - e^{-x})$ is obtained by enlarging $y = e^x - e^{-x}$ by a factor $\frac{1}{2}$ in the direction parallel to the y-axis.

Problem GRA2_17.

Use the graph of $y = \cos^{-1} x$ to sketch the graphs of:

a)
$$y = \frac{1}{2}\cos^{-1} x$$
, b) $y = \cos^{-1} \left(\frac{x}{2}\right)$.

Solution:

a)

The graph $y = \frac{1}{2}\cos^{-1} x$ is obtained by enlarging $y = \cos^{-1} x$ by a factor $\frac{1}{2}$ in the direction parallel to the y-axis.

is obtained by enlarging $y = \cos^{-1} x$ by a factor 2 in the direction The graph $y = \cos^{-1}\left(\frac{x}{2}\right)$ parallel to the x-axis.

Problem GRA2_18.

Sketch the graph of $y = x^2 \ln x$.

Solution:

The graph $y = x^2 \ln x$ is obtained by multiplication of ordinates $y = x^2$ and $y = \ln x$. Features:

- Domain $\{x: x > 0\}$
- y = 0 when x = 1
- $y = x^2 \ln x$ lies above $y = x^2$ only for x > e (where $\ln x > 1$).
- As $x \to 0^+$, $\left| \ln x \right| \to \infty$ more slowly than $\frac{1}{x}$ and hence $x \ln x \to 0^-$.

Problem GRA2_19.

Use the graphs of y = x and $y = e^x$ to sketch the graph of $y = \frac{e^x}{x}$.

Solution:

The graph $y = \frac{e^x}{x}$ is obtained by multiplication of ordinates of $y = \frac{1}{x}$ and $y = e^x$.

Features of $y = \frac{e^x}{x}$:

• Domain $\{x: x \neq 0\}$

•
$$y = e$$
 as $x = 1$

•
$$y = \frac{e^x}{x}$$
 lies above $y = \frac{1}{x}$ for $x > 0$ and for $x < 0$

• As
$$x \to 0^+$$
, $e^x \to 1 \implies y = \frac{e^x}{x} \to +\infty$

• As
$$x \to 0^-$$
, $e^x \to 1 \implies y = \frac{e^x}{x} \to -\infty$

Problem GRA2_20.

Sketch the graph of $y = \frac{1}{\sin^{-1} x}$.

Solution:

The graph $y = \frac{1}{\sin^{-1} x}$ are constructed by considering the features of $y = \sin^{-1} x$.

Features of $y = \frac{1}{\sin^{-1} x}$:

- $\sin^{-1} x$, $\frac{1}{\sin^{-1} x}$ have the same sign.
- $\sin^{-1} x$ increases $\Rightarrow \frac{1}{\sin^{-1} x}$ decreases.
- $\sin^{-1} x = 0$ when $x = o \Rightarrow$ the line x = 0 is the vertical asymptote of $y = \frac{1}{\sin^{-1} x}$.

Problem GRA2_21.

Use the graphs of y = x and $y = e^x$ to sketch the graph of $y = \frac{x}{e^x}$.

The graph of $y = \frac{x}{e^x}$ is obtained by division of ordinates of the graphs y = x and $y = e^x$.

Features:

- y = 0 when x = 0.
- For all real x, $xe^x < x \Rightarrow$ the graph $y = \frac{x}{e^x}$ lies below the line y = x.
- $y = \frac{x}{e^x} > 0$ only for x > 0, and $y = \frac{x}{e^x} < 0$ only for x < 0.
- As $x \to +\infty$, $e^x \to +\infty$ more quickly than any power of x and hence $\frac{x}{e^x} \to 0^+$.
- As $x \to -\infty$, $\frac{x}{e^x} = xe^{-x} \to -\infty$ more quickly than e^{-x} .

Problem GRA2_22.

Use the graphs of y = x and $y = \ln x$ to sketch the graph of $y = \frac{\ln x}{x}$.

Solution:

$$0.6 y y = \ln(x)$$

$$y = x / (e, \frac{1}{2})$$

$$0.2 / (2 - \frac{1}{2})$$

$$0.2 / (2 - \frac{1}{2})$$

$$0.2 / (2 - \frac{1}{2})$$

$$0.3 / (2 - \frac{1}{2})$$

$$0.4 / (2 - \frac{1}{2})$$

$$0.5 / (2 - \frac{1}{2})$$

$$0.6 / (2 - \frac{1}{2})$$

$$0.6 / (2 - \frac{1}{2})$$

$$0.7 / (2 - \frac{1}{2})$$

$$0.8 / (2 - \frac{1}{2})$$

$$0.9 / (2 - \frac{1}{2})$$

$$0.9 / (2 - \frac{1}{2})$$

$$0.1 / (2 - \frac{1}{2})$$

$$0.2 / (2 - \frac{1}{2})$$

$$0.3 / (2 - \frac{1}{2})$$

$$0.4 / (2 - \frac{1}{2})$$

$$0.6 / (2 - \frac{1}{2})$$

$$0.7 / (2 - \frac{1}{2})$$

$$0.8 / (2 - \frac{1}{2})$$

$$0.9 / (2 - \frac{1}{2})$$

$$0.$$

The graph of $y = \frac{\ln x}{x}$, domain $\{x : x > 0\}$, is obtained by division of ordinates of the graphs $y = \ln x$ and y = x.

Features:

• y = 0 when x = 1.

• As $x \to +\infty$, $\ln x \to +\infty$ at a much slower rate than any power of x and hence $\frac{\ln x}{x} \to 0^+$.

• As $x \to 0^+$, $\frac{\ln x}{r} \to -\infty$.

• For all x > 0, $\frac{\ln x}{x} < \ln x \implies$ the graph of $y = \frac{\ln x}{x}$ lies below $y = \ln x$.

Problem GRA2_23.

Show that $\frac{x^2}{x+1} = x - 1 + \frac{1}{x+1}$. Hence sketch the graph of $y = \frac{x^2}{x+1}$.

Solution:

$$\frac{x^2}{x+1} = \frac{x^2 - 1 + 1}{x+1} = \frac{x^2 - 1}{x+1} + \frac{1}{x+1} = x - 1 + \frac{1}{x+1}.$$

The graph has been constructed by addition of the ordinates of y = x - 1 and $y = \frac{1}{x+1}$. y = x - 1 is an asymptote as $x \to \infty$.

Problem GRA2_24.

Sketch the graph of $y = \frac{x^2}{x^2 - 1}$.

$$y = \frac{x^2}{x^2 - 1} = \frac{x^2 - 1 + 1}{x^2 - 1} = 1 + \frac{1}{x^2 - 1} \implies y = 1 + \frac{1}{x^2 - 1}$$

The graph $y = \frac{1}{x^2 - 1}$ has been translated one unit upward.

y = 1 is an asymptote as $x \to \infty$. The graph $y = \frac{1}{x^2 - 1}$ is a reciprocal of $y = x^2 - 1$.

Consider the graphs y = f(x) and $y = \frac{1}{f(x)}$, where $f(x) = x^2 - 1$.

Features:

- f(x), $\frac{1}{f(x)}$ have the same sign.
- f(x) = 0 when $x = \pm 1$ \implies the lines x = -1 and x = 1 are vertical asymptotes of $y = \frac{1}{f(x)}$.
- As $x \to \infty$, $f(x) \to +\infty$ $\Rightarrow \frac{1}{f(x)} \to 0^+$.
- Minimum turning point of y = f(x) is (0, -1) \Rightarrow maximum turning point of $y = \frac{1}{f(x)}$ is (0, -1).

Problem GRA2_25.

Sketch the graph of $y = \frac{x^2 + 4}{x}$.

$$y = \frac{x^2 + 4}{x} = x + \frac{4}{x}$$
. Domain $\{x : x \neq 0\}$

 $y = \frac{x^2 + 4}{x} = x + \frac{4}{x}$. Domain $\{x : x \neq 0\}$. The graph has been constructed by addition of the ordinates of y = x and $y = \frac{4}{x}$. y = x is an asymptote as $x \to \infty$.

Problem GRA2_26.

Use the graph of $y = 3x - \frac{x^3}{4}$ to sketch the graph of. $y = \left(3x - \frac{x^3}{4}\right)^2$

Solution:

$$f(x) = 3x - \frac{x^3}{4} \quad f'(x) = 3 - \frac{3}{4}x^2$$

Sign of f'(x)

$$y = [f(x)]^2 \frac{dy}{dx} = 2f(x)f'(x) \frac{dy}{dx} = 2x(3 - \frac{x^2}{4})(3 - \frac{3}{4}x^2)$$
$$\frac{dy}{dx} = \frac{3}{8}x(2\sqrt{3} - x)(2\sqrt{3} + x)(2 - x)(2 + x)$$

Sign of
$$\frac{dy}{dx}$$

$$(-2\sqrt{3},0)$$
 $(-2,16)$ $(0,0)$ $(2,16)$ $(2\sqrt{3},0)$

Problem GRA2_27.

Use the graph of $y = 4 \sin x$ to sketch the graph of $y = (4 \sin x)^2$.

Solution:

$$f(x) = 4\sin x \quad f'(x) = 4\cos x$$

Critical points are $\frac{\pi}{2} + n\pi$, n - integral

Sign of f'(x)

$$y = [f(x)]^2$$
 $\frac{dy}{dx} = 2f(x)f'(x)$ $\frac{dy}{dx} = 2(4\sin x)(4\cos x) = 16\sin 2x$

Critical points are $n\frac{\pi}{2}$, n-integral

Sign of
$$\frac{dy}{dx}$$

Problem GRA2_28.

Use the graph of $y = 1 - x^2$ to sketch the graph of $y = (1 - x^2)^3$.

$$f(x) = 1 - x^2$$
 $f'(x) = -2x$

$$y = [f(x)]^3$$
 $\frac{dy}{dx} = 3[f(x)]^2 f'(x)$ $\frac{dy}{dx} = -6x(1-x^2)^2$

Sign of
$$\frac{dy}{dx}$$

Problem GRA2_29.

For the function $f(x) = x^2 - 1$ use the graph of y = f(x) to sketch the graphs of a) $y = \sqrt{f(x)}$, b) $y^2 = f(x)$.

Solution:

a)

Features:

- $y = \sqrt{f(x)}$ is defined only where $f(x) \ge 0$.
- f(x) = 0 where $x = \pm 1 \Rightarrow \frac{dy}{dx} = \frac{f'(x)}{2\sqrt{f(x)}}$ is not defined at $x = \pm 1 \Rightarrow (-1,0)$ and (1,0) are

- $\frac{dy}{dx} = \frac{x}{\sqrt{f(x)}} \to \infty \text{ as } x \to -1^- \text{ or } x \to 1^{+1} \Rightarrow \text{ the tangent lines at } (\pm 1,0) \text{ are vertical.}$
- The graph $y = \sqrt{f(x)}$ lies above the graph y = f(x) where f(x) < 1.

The graph $y = \sqrt{f(x)}$ lies below the graph y = f(x) where f(x) > 1.

• y = f(x), $y = \sqrt{f(x)}$ intersect where f(x) = 1 or f(x) = 0.

b)

 $y = \sqrt{f(x)} \Rightarrow y^2 = f(x) \Rightarrow (-y)^2 = f(x)$. Hence the graph $y^2 = f(x)$ is obtained by reflecting $y = \sqrt{f(x)}$ in the x-axis. The graph $y^2 = f(x)$ has vertical tangent lines at the critical points $(\pm 1,0)$.

Problem GRA2_30.

Use the graph of $y = 4\cos x$ to sketch the graphs of:

a)
$$y = \sqrt{4\cos x}$$

b)
$$y^2 = 4\cos x$$

Solution:

a)

Let $f(x) = 4\cos x$

Features of $y = \sqrt{f(x)}$:

- $y = \sqrt{f(x)}$ is defined only where $f(x) \ge 0$.
- f(x) = 0 where $x = \frac{\pi}{2} + \pi n$, n integral $\Rightarrow \frac{dy}{dx} = \frac{f'(x)}{2\sqrt{f(x)}}$ is not defined at

 $x = \frac{\pi}{2} + \pi n$, n - integral $\Rightarrow (\frac{\pi}{2} + n\pi, 0)$, n - integral, are critical points.

•
$$\frac{dy}{dx} = \frac{-2\sin x}{\sqrt{f(x)}} \to \infty$$
 as $x \to (\frac{\pi}{2} + 2\pi n)^-$, n - integral, or $x \to (-\frac{\pi}{2} + 2\pi n)^+$, n - integral, \Rightarrow

the tangent lines at $(\frac{\pi}{2} + \pi n, 0)$, n - integral, are vertical.

b)

 $y = \sqrt{f(x)} \Rightarrow y^2 = f(x) \Rightarrow (-y)^2 = f(x)$ Hence the graph $y^2 = f(x)$ is obtained by reflecting $y = \sqrt{f(x)}$ in the x-axis. The graph $y^2 = f(x)$ has vertical tangent lines at the critical points $(\frac{\pi}{2} + n\pi, 0)$, n - integral.

Problem GRA2 31.

Sketch the graph of $y = \ln(1 - x^2)$.

Solution:

Features of the graph of the composite function $y = \ln(1 - x^2)$:

- $y = \ln u$, $u = 1 x^2 \implies y = \ln(1 x^2)$.
- $y = \ln u$ is defined where $u = 1 x^2 > 0$ \Rightarrow domain $\{x : -1 < x < 1\}$
- Vertical asymptote of $y = \ln u$ at u = 0. But $u = 1 x^2$ and $1 x^2 = 0$ at $x = \pm 1 \implies x = -1$ and x = 1 are vertical asymptotes of $y = \ln(1 x^2)$.
- $u = 1 x^2 \le 1$ $\Rightarrow y = \ln u \le 0$.
- $\ln(1-(-x)^2) = \ln(1-x^2)$ \Rightarrow the function $y = \ln(1-x^2)$ is even.
- $y = \ln u$ is an increasing function $\Rightarrow y = \ln(1 x^2)$ increases as $1 x^2$ increases and decreases as $1 x^2$ decreases.

Problem GRA2_32.

Sketch the graph of $y = e^{-x^2}$.

Solution:

Features of the composite function $y = e^{-x^2}$:

•
$$y = e^{-u}, u = x^2 \implies y = e^{-x^2}$$

•
$$y = e^{-u}$$
, $u = x^2$ $\Rightarrow y = e^{-x^2}$.
• $e^{-(-x)^2} = e^{-x^2}$ $\Rightarrow y = e^{-x^2}$ is an even function.

• $y = e^{-u}$ is an decreasing function $\Rightarrow y = e^{-x^2}$ increases as x^2 decreases and decreases as

• The minimum turning point (0, 0) of $u = x^2$ corresponds to the maximum turning point (0,1) of $y = e^{-x^2}$.

Problem GRA2_33.

Sketch (showing critical points) the graph of $x^{\frac{3}{2}} + y^{\frac{3}{2}} = 1$.

 $x^{\frac{3}{2}} + y^{\frac{3}{2}} = 1$. Clearly $x, y \ge 0 \Rightarrow$ domain $\{x : 0 \le x \le 1\}$, range $\{y : 0 \le y \le 1\}$. Taking the derivative of both sides with respect to x, remembering that y is a function of x, we have

$$\frac{3}{2}x^{\frac{1}{2}} + \frac{3}{2}y^{\frac{1}{2}}\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\left(\frac{x}{y}\right)^{\frac{1}{2}}.$$

As $y \to 0^+$, $x \to 1^- \Rightarrow \frac{dy}{dx} \to -\infty$. Hence the curve has a vertical tangent line at the critical point (1,0).

As $x \to 0^+$, $y \to 1^- \Rightarrow \frac{dy}{dx} \to 0^-$. Hence the curve has a horizontal tangent line at the critical point (0,1).

The curve is symmetric about y = x, since the transformation $y \leftrightarrow x$ leaves the Cartesian equation of the curve unchanged.

Problem GRA2_34.

Sketch (showing critical points and stationary points) the graph of $x^2 + 4y^2 = 4$.

Solution:

 $x^2 + 4y^2 = 4$. Clearly x^2 , $y^2 \ge 0$, hence domain $\{x : -2 \le x \le 2\}$, range $\{y : -1 \le y \le 1\}$. Take the derivative of both sides with respect to x. Consider y as a function of x and use the chain rule. Then we have $2x + 8y \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{1}{4} \left(\frac{x}{y}\right)$.

As $y \to 0$, $x \to \pm 2 \Rightarrow \frac{dy}{dx} \to -\infty$ and the curve has vertical tangent at (-2,0) and (2,0).

As x = 0, $y = \pm 1 \Rightarrow \frac{dy}{dx} = 0$ and the curve has horizontal tangent at (0,-1) (0,1).

Clearly the curve is symmetric about the lines y = 0 and x = 0 as the transformation $y \to -y$ and $x \to -x$ leave the Cartesian equation of the curve unchanged.

Problem GRA2_35.

Sketch the graph of y = |x| - |x - 4|. Use this graph to solve the inequality |x| - |x - 4| > 2.

Answer: $\{x : x > 3\}$.

Solution:

$$y = -x + (x-4)
0
y = x - (x-4)
0
y = x + (x-4)
x$$

$$y = \begin{bmatrix} -4, & x < 0 \\ 2x - 4, & 0 \le x < 4 \\ 4, & x > 4 \end{bmatrix}$$

By inspection of the graph, |x|-|x-4|>2 for x>3.

Problem GRA2_36. Sketch the graph of $y = \cos x$ for $0 \le x \le 2\pi$. Use this graph to solve the inequalities.

a)
$$\cos x \le \frac{1}{2}$$
, for $0 \le x \le 2\pi$; b) $|\cos x| \le \frac{1}{2}$, for $0 \le x \le 2\pi$.

Answer: a)
$$\{x : \frac{\pi}{3} \le x \le \frac{5}{3}\pi\}$$
; b) $\{x : \frac{\pi}{3} \le x \le \frac{2}{3}\pi \text{ or } \frac{4}{3}\pi \le x \le \frac{5}{3}\pi\}$.

$$y = \cos(x)$$

$$0.5$$

$$y = \cos(x)$$

$$y = -1/2$$

$$y = -1/2$$

$$y = -1/2$$

$$y = -1/2$$

a)
$$\cos x = \frac{1}{2} \Leftrightarrow x = \pm \cos^{-1} \frac{1}{2} + 2\pi n$$
, *n* integral. But of these values of *x* only $\cos^{-1} = \frac{\pi}{3}$ and $-\frac{\pi}{3} + 2\pi = \frac{5}{3}\pi$ are from the interval $[0; 2\pi]$. By inspection of the graph, $\cos x \le \frac{1}{2}$, for $\frac{\pi}{3} \le x \le \frac{5}{3}\pi$.

b)
$$\left|\cos x\right| \le \frac{1}{2} \Leftrightarrow -\frac{1}{2} \le \cos x \le \frac{1}{2}$$

 $\cos x = -\frac{1}{2} \Rightarrow x = \frac{2}{3}\pi \text{ or } x = \frac{4}{3}\pi$.

By inspecting the graph, $\left|\cos x\right| \le \frac{1}{2}$ for $\frac{\pi}{3} \le x \le \frac{2}{3}\pi$ or $\frac{4}{3}\pi \le x \le \frac{5}{3}\pi$.

Problem GRA2 37.

Sketch the graph of $y = x^4 - 4x^3$. Use this graph to find the number of real roots of the equation $x^4 - 4x^3 = kx$, where k is a positive real number.

Answer: 2 real roots.

Solution:

Features of the graph $y = x^4 - 4x^3$:

$$y = 0$$
 when $x = 0$

$$\frac{dy}{dx} = 4x^3 - 12x^2$$

Sign of
$$\frac{dy}{dx} = 4x^2(x-3)$$

Real solution of the equation $x^4 - 4x^3 = kx$ are given by x-values where $y = x^4 - 4x^3$ and y = kx intersect. $k > 0 \Rightarrow$ the equation has 2 real roots.

Problem GRA2_38.

Sketch the graph of $y = \frac{(x+1)^4}{x^4+1}$. Use this graph to find the set of values of the real number k for which the equation $(x+1)^4 = k(x^4+1)$ has two real distinct roots.

Answer: $\{k : 0 < k < 8, k \neq 1\}$.

Solution:

Features of the graph $y = \frac{(x+1)^4}{x^4+1}$:

- y = 0 when x = -1
- As $x \to \infty$, $y \to 1$
- y = 1 when x = 0

•
$$\frac{dy}{dx} = \frac{4(x+1)^3(1-x^3)}{(x^4+1)^2}$$

Sign of $\frac{dy}{dx}$

Real solution of the equation $(x+1)^4 = k(x^4+1)$ are given by x-values where $y = \frac{(x+1)^4}{x^4+1}$ and y = k intersect. Hence the equation has two real distinct roots for the following set of $k \in \{k: 0 < k < 8, k \ne 1\}$.

Problem GRA2_39.

Find the gradient of the tangent from the origin to the curve $y = \ln x$. Hence find the set of values of the real number k such that the equation $\ln x = kx$ has two real distinct roots.

Answer:
$$\frac{1}{e}$$
, $0 < k < \frac{1}{e}$.

Solution:

Let the gradient of the tangent from the origin to the curve be equal to a. Then $a = (\ln x)'$, i.e., $a = \frac{1}{x}$. In addition at the point (x, y) where the tangent touch the curve $y = \ln x$ and simultaneously y = ax. Hence we have the simultaneous equations:

$$\begin{bmatrix} a = \frac{1}{x} \\ y = \ln x \Leftrightarrow \\ y = ax \end{bmatrix} \begin{cases} a = \frac{1}{x} \\ y = \ln x \Leftrightarrow \\ y = 1 \end{cases} \begin{bmatrix} a = \frac{1}{x} \\ y = e \\ y = 1 \end{bmatrix} \begin{cases} a = \frac{1}{e} \\ y = e \\ y = 1 \end{cases}$$

Real solution of the equation $\ln x = kx$ are given by x-values where $y = \ln x$ and y = kx intersect. Hence the equation has two real distinct roots for the following set of k $\{k: 0 < k < \frac{1}{e}\}$.

Problem GRA2 40.

A chord AB of a circle makes on angle θ with the diameter passing through A. If the area of the minor segment is one-quarter the area of the circle, show that $\sin 2\theta = \frac{\pi}{2} - 2\theta$. Solve this equation graphically.

Answer: $\theta \approx 0.4$.

Let the chord AB subtends an angle α at the centre of a circle. $|OA| = |OB| \Rightarrow$ the triangle OAB is isosceles $\Rightarrow \angle OAB = \angle OBA$. Hence $\alpha = \pi - 2\theta$.

Area of a segment $=\frac{1}{4}$ area of a circle $\Rightarrow \frac{1}{2}r^2(\alpha - \sin \alpha) = \frac{1}{4}\pi r^2$

$$\pi - 2\theta - \sin(\pi - 2\theta) = \frac{\pi}{2} \Rightarrow \sin 2\theta = \frac{\pi}{2} - 2\theta$$
.

Solution of this equation is given by θ -values, where $y = \sin x$ and $y = \frac{\pi}{2} - x$ intersect, and $2\theta = x$. From the graph we have $2\theta \approx 0.83 \Rightarrow \theta \approx 0.4$.