Topic 7. Graphs.

Level 3.

Problem GRA3 01.

Sketch (showing critical points) the graphs of: a) $y = x^{1/3}$; b) $y = x^{1/3} + 2$.

Solution:

a)
$$y = x^{1/3}$$

$$\frac{dy}{dx} = \frac{1}{3}x^{-2/3}.$$

$$\frac{dy}{dx}$$
 is not defined at $x = 0$

$$\Rightarrow$$
 (0, 0) is a critical point.

$$\frac{dy}{dx} \to \infty \quad \text{as} \quad x \to 0$$

$$\Rightarrow$$
 the tangent line at $(0, 0)$ is vertical.

b)
$$y = x^{1/3} + 2$$

$$\frac{dy}{dx} = \frac{1}{3}x^{-2/3}.$$

$$\frac{dy}{dx}$$
 is not defined at $x = 0$

$$\Rightarrow$$
 (0,2) is a critical point.

$$\frac{dy}{dx} \to \infty$$
 as $x \to 0$

$$\Rightarrow$$
 the tangent line at $(0, 2)$ is vertical.

Problem GRA3 02.

Sketch (showing critical points) the graphs of: a) $y = x(3 + \sqrt{x})$; b) $y = x(3 + \sqrt{x})$.

Solution:

a)
$$y = 3x + x^{3/2}$$

Domain
$$\{x : x \ge 0\}$$
 $\frac{dy}{dx} = 3 + \frac{3}{2}x^{1/2}, x > 0.$

$$\frac{dy}{dx} \rightarrow 3$$
 as $x \rightarrow 0^+ \Rightarrow y = 3x$ is the tangent line at the critical point $(0,0)$.

b)
$$y = 3x - x^{3/2}$$

Domain
$$\{x : x \ge 0\}$$
 $\frac{dy}{dx} = 3 - \frac{3}{2}x^{1/2}, x > 0.$

$$\frac{dy}{dx} \rightarrow 3$$
 as $x \rightarrow 0^+ \Rightarrow y = 3x$ is the tangent

line at the critical point (0,0).

Problem GRA3_03.

Sketch (showing critical points) the graph of $y = x^2 - |x|$.

Solution:

$$y = x^{2} - |x|$$

$$y = \begin{cases} x^{2} - x, & x \ge 0 \\ x^{2} + x, & x < 0 \end{cases} \frac{dy}{dx} = \begin{cases} 2x - 1, & x \ge 0 \\ 2x + 1, & x < 0 \end{cases}$$

$$\frac{dy}{dx} \rightarrow -1 \text{ as } x \rightarrow 0^{+} \frac{dy}{dx} \rightarrow 1 \text{ as } x \rightarrow 0^{-}$$

$$\Rightarrow \frac{dy}{dx} \text{ is not defined at } x = 0, \text{ and } (0, 0) \text{ is a critical point.}$$

Problem GRA3_04.

Sketch (showing critical points) the graph of y = |x| + |x - 2|.

$$y = |x| + |x - 2|$$

$$|x| = \begin{bmatrix} x, & x \ge 0 \\ -x, & x < 0 \end{bmatrix}, \quad |x - 2| = \begin{bmatrix} x - 2, & x \ge 2 \\ -x + 2, & x < 2 \end{bmatrix}$$

Note that,

if
$$x \ge 2$$
, $y = x + x - 2 = 2x - 2$

if
$$2 > x \ge 0$$
, $y = x - x + 2 = 2$

if
$$x < 0$$
, $y = -x - x + 2 = -2x + 2$

$$\Rightarrow y = \begin{bmatrix} 2x - 2, & x \ge 2 \\ 2, & 2 > x \ge 0 \\ -2x + 2, & x < 0 \end{bmatrix} \qquad \frac{dy}{dx} = \begin{bmatrix} 2, & x > 2 \\ 0, & 0 < x < 2 \\ -2, & x < 0 \end{bmatrix}$$

$$\frac{dy}{dx} \to 2$$
 as $x \to 2^+$ $\frac{dy}{dx} \to 0$ as $x \to 2^-$

$$\Rightarrow \frac{dy}{dx}$$
 is not defined at $x = 2$, and (2, 2) is a critical point.

$$\frac{dy}{dx} \to 0$$
 as $x \to 0^+$ $\frac{dy}{dx} \to -2$ as $x \to 0^-$

$$\Rightarrow \frac{dy}{dx}$$
 is not defined at $x = 0$, and $(0, 2)$ is a critical point.

Problem GRA3 05.

Use the graph of $y = \ln x$ to sketch the graphs of: a) $y = \ln(-x)$, b) $y = -\ln x$.

Solution:

a) $y = \ln x$, domain $\{x : x > 0\}$. $y = \ln(-x)$, domain $\{x : x < 0\}$.

The graph of $y = \ln(-x)$ is a reflection of $y = \ln x$ in the y-axis.

b) The graph of $y = -\ln x$ is a reflection of $y = \ln x$ in the x-axis.

Problem GRA3 06.

Use the graph of $y = \ln x$ to sketch the graph of $y = |\ln x|$.

Solution:

 $y = \ln x$, domain $\{x : x > 0\}$.

$$y = |\ln x| = \begin{bmatrix} \ln x, \ln x \ge 0 \\ -\ln x, \ln x < 0 \end{bmatrix} \Rightarrow y = \ln x = \begin{bmatrix} \ln x, x \ge 1 \\ -\ln x, 0 < x < 1 \end{bmatrix}$$

Hence the section of $y = \ln x$ which lies below the x-axis is reflected in the x-axis.

Problem GRA3_07.

Use the graph of $f(x) = x^3 - 3x$ (an odd function) to sketch (showing critical points) the graph of y = |f(x)|. Is this the graph of an even function?

Let $g(x) = |x^3 - 3x| \Rightarrow g(-x) = |(-x)^3 - 3(-x)| = |-(x^3 - 3x)| = |(x^3 - 3x)| \Rightarrow g(-x) = g(x) \Rightarrow$ the graph of y = g(x) is symmetric in the y-axis.

Those sections of $y = x^3 - 3x$ which lie below the x-axis are reflected in the x-axis.

$$y = |x^{3} - 3x| = \begin{bmatrix} 3x - x^{3}, & x < -\sqrt{3} \\ x^{3} - 3x, & -\sqrt{3} \le x < 0 \\ 3x - x^{3}, & 0 \le x < \sqrt{3} \\ x^{3} - 3x, & x \ge \sqrt{3} \end{bmatrix} \frac{dy}{dx} = \begin{bmatrix} 3 - 3x^{2}, & x < -\sqrt{3} \\ 3x^{2} - 3, & -\sqrt{3} < x < 0 \\ 3 - 3x^{2}, & 0 < x < \sqrt{3} \\ 3x^{2} - 3, & x > \sqrt{3} \end{bmatrix}$$

 $\frac{dy}{dx} \to 3$ as $x \to 0^+$, $\frac{dy}{dx} \to -3$ as $x \to 0^ \Rightarrow \frac{dy}{dx}$ is not defined at x = 0, and (0; 0) is a critical point.

erriteal point.
$$\frac{dy}{dx} \to 6 \text{ as } x \to -\sqrt{3}^+, \quad \frac{dy}{dx} \to -6 \text{ as } x \to -\sqrt{3}^- \Rightarrow \frac{dy}{dx} \text{ is not defined at } x = -\sqrt{3}, \text{ and } (-\sqrt{3}; 0) \text{ is a critical point.}$$

Hence the symmetric about the y-axis point $(\sqrt{3}, 0)$ is also a critical point.

Problem GRA3 08.

Sketch the graph of |x| - |y| = 1.

Solution:

$$|x| - |y| = 1 \Rightarrow |x| = 1 + |y|$$

Clearly $y \ge 0 \Rightarrow \text{domain } \{x : |x| \ge 1\}$.

If
$$x \ge 1$$
, then $y = x - 1$ or $y = 1 - x$. Hence $\frac{dy}{dx} = 1$, $x > 1$, or $\frac{dy}{dx} = -1$, $x > -1$.

As
$$y \to 0^+$$
, $x \to 1^+ \Rightarrow \frac{dy}{dx} \to 1$, and as $y \to 0^-$, $x \to 1^+ \Rightarrow \frac{dy}{dx} \to -1$.

Hence $\frac{dy}{dx}$ is not defined at x = 1, and (1, 0) is a critical point.

The curve is symmetric about x=0, since the transformation $x\to -x$ leaves the Cartesian equation of the curve unchanged. Hence, if $x\le -1$, then y=-x-1 or y=1+x. And hence the symmetric point (-1,0) is also critical.

Problem GRA3_09.

Use the graph of $y = \sin^{-1} x$ to sketch the graphs of:

a)
$$y = \sin^{-1} x + \frac{\pi}{2}$$
 b) $y = \sin^{-1} (x+1)$.

Solution:

a) The graph $y = \sin^{-1} x + \frac{\pi}{2}$ is obtained by translating the graph $y = \sin^{-1} x$ through $\frac{\pi}{2}$ units up.

b) The graph $y = \sin^{-1}(x+1)$ is obtained by translating the graph $y = \sin^{-1} x$ through one unit to the left.

Problem GRA3_10.

Use the graphs of y = x and $y = \sin x$ (both odd functions) to sketch the graph of $y = x + \sin x$. Is this the graph of an odd function?

Solution:

Let $f(x) = x + \sin x \Rightarrow f(-x) = -x + \sin(-x) = -x - \sin x \Rightarrow f(-x) = -f(x)$, i.e., the function $x + \sin x$ is an odd function. The ordinates of the graph $y = x + \sin x$ are obtained by summing the ordinates of the graphs y = x and $y = \sin x$.

Problem GRA3_11.

Sketch the graph of $y = \frac{1}{x} + \frac{1}{x^2}$.

Solution:

The ordinates of the graph $y = \frac{1}{x} + \frac{1}{x^2}$ are obtained by summing the ordinates of the graphs $y = \frac{1}{x}$ and $y = \frac{1}{x^2}$.

Problem GRA3_12.

Sketch the graph of $y = \frac{1}{x} - \frac{1}{x^2}$.

Solution:

The ordinates of the graph $y = \frac{1}{x} - \frac{1}{x^2}$ are obtained by applying the procedure of subtraction of ordinates of the graphs $y = \frac{1}{x}$ and $y = \frac{1}{x^2}$.

Problem GRA3_13.

Use the graph of $y = \sin^{-1} x$ to sketch the graph of: $y = \frac{1}{2} \sin^{-1} x$.

The graph $y = \frac{1}{2}\sin^{-1}x$ is obtained by enlarging the graph $y = \sin^{-1}x$ by a factor $\frac{1}{2}$ in the direction parallel to the y-axis.

Problem GRA3_14.

Use the graphs of y = x and $y = e^{-x}$ to sketch the graph of $y = xe^{-x}$.

Solution:

The graph of $y = xe^{-x}$ is obtained by multiplication of ordinates of y = x and $y = e^{-x}$. Features of $y = xe^{-x}$:

- y = 0 when x = 0.
- $y = xe^{-x}$ lies below y = x for all real x as $xe^{-x} < x$ for x > 0 and $xe^{-x} < x$ for x < 0.
- $y = xe^{-x}$ lies below $y = e^{-x}$ for 0 < x < 1.
- As $x \to +\infty$, $e^{-x} \to 0$ more quickly than any power of $\frac{1}{x}$ and hence $xe^{-x} \to 0$.
- As $x \to -\infty$, $xe^{-x} \to -\infty$ more quickly than e^{-x} .

Problem GRA3 15.

Use the graphs of y = x and $y = \sin x$ (both odd functions) to sketch the graph of $y = x \sin x$. Is this the graph of an even function?

Solution:

The graph of $y = x \sin x$ is obtained by multiplication of ordinates of y = x and $y = \sin x$. Let $f(x) = x \sin x \Rightarrow f(-x) = (-x) \sin(-x) = x \sin x \Rightarrow y = x \sin x$ is an even function and hence its graph has axis symmetry about the y-axis.

For $x \ge 0$, $-x \le x \sin x \le x$ and hence the graph $y = x \sin x$ lies between the lines $y = \pm x$, touching these lines when $\sin x = \pm 1$.

Problem GRA3 16.

Sketch the graph of $y = \frac{\ln x}{x^2}$

Solution:

The graph $y = \frac{\ln x}{x^2}$ is obtained by multiplication of ordinates $y = \ln x$ and $y = \frac{1}{x^2}$.

Features:

- Domain $\{x: x > 0\}$
- y = 0 when x = 1
- $y = \frac{\ln x}{x^2}$ lies above $y = \frac{1}{x^2}$ only for x > e (where $\ln x > 1$).
- As $x \to +\infty$, $x^2 \to +\infty$ more quickly than $\ln x$ and hence $\frac{\ln x}{x^2} \to 0^+$.

Problem GRA3 17.

Use the graph of $f(x) = x^3 - 3x$ (an odd function) to sketch the graph of $y = \frac{1}{f(x)}$. Is this the graph of an odd function?

Solution:

 $\frac{1}{f(-x)} = \frac{1}{(-x)^3 - 3(-x)} = \frac{-1}{x^3 - 3x} = \frac{-1}{f(x)} \Rightarrow y = \frac{1}{x^3 - 3x}$ is an odd function.

Features:

- f(x), $\frac{1}{f(x)}$ have the same sign.
- f(x) = 0 when $x = \pm \sqrt{3}$ or $x = 0 \Rightarrow$ the lines $x = -\sqrt{3}$, $x = +\sqrt{3}$ and x = 0 are the vertical asymptotes of $y = \frac{1}{f(x)}$.
- As $x \to \infty$, $f(x) \to \infty$ $\Rightarrow \frac{1}{f(x)} \to 0$.
- (-1, 2) and (1, -2) are maximum and minimum turning points of y = f(x) respectively \Rightarrow (-1, $\frac{1}{2}$) and (1, $-\frac{1}{2}$) are minimum and maximum turning points of $y = \frac{1}{f(x)}$ respectively.

Problem GRA3_18.

Show that
$$\frac{x^2 - 2}{x^2 - 1} = 1 - \frac{1}{x^2 - 1}$$
. Hence sketch the graph of $y = \frac{x^2 - 2}{x^2 - 1}$.

Solution:

$$\frac{x^2 - 2}{x^2 - 1} = \frac{(x^2 - 1) - 1}{x^2 - 1} = 1 - \frac{1}{x^2 - 1}$$

The graph $y = -\frac{1}{x^2 - 1}$ has been translated one unit upward. y = 1 is an asymptote of

$$y = \frac{x^2 - 2}{x^2 - 1}$$
 as $x \to \infty$. The graph $y = -\frac{1}{x^2 - 1}$ is a reflection in the x-axis of $y = \frac{1}{x^2 - 1}$.

The graph $y = \frac{1}{x^2 - 1}$ is a reciprocal of $y = x^2 - 1$.

Consider the graphs y = f(x) and $y = \frac{1}{f(x)}$, where $f(x) = x^2 - 1$.

Features:

- f(x), $\frac{1}{f(x)}$ have the same sign.
- f(x) = 0 when $x = \pm 1$ \Rightarrow the lines x = -1 and x = 1 are vertical asymptotes of $y = \frac{1}{f(x)}$.
- As $x \to \infty$, $f(x) \to +\infty$ $\Rightarrow \frac{1}{f(x)} \to 0^+$.
- Minimum turning point of y = f(x) is (0, -1) \Rightarrow maximum turning point of $y = \frac{1}{f(x)}$ is (0, -1).

Problem GRA3_19.

Sketch the graphs of a) $y = \frac{x}{x^2 - 1}$, b) $y = \frac{x^2}{x^2 - 1}$.

Solution:

a) The graph $y = \frac{x}{x^2 - 1}$ is obtained by multiplication of ordinates $y = \frac{1}{x^2 - 1}$ and y = x.

Features of the graph $y = \frac{1}{x^2 - 1}$

The graph $y = \frac{1}{x^2 - 1}$ is a reciprocal of $y = x^2 - 1$:

- $y = x^2 1$ and $y = \frac{1}{x^2 1}$ have the same sign
- $x^2 1 = 0$ when $x = \pm 1 \Rightarrow$ the lines x = -1 and x = 1 correspond to vertical asymptotes of $y = \frac{1}{x^2 1}$
- As $x \to \infty$, $x^2 1 \to +\infty \Rightarrow \frac{1}{x^2 1} \to 0^+$.
- Minimum turning point of $y = x^2 1$ (0, -1) \Rightarrow maximum turning point

of
$$y = \frac{1}{x^2 - 1}$$
 is (0, -1).

Features of the graph $y = \frac{x}{x^2 - 1}$:

- y = 0 when x = 0
- As $x \to \infty$, $y = \frac{x}{x^2 1} \to 0 \Rightarrow$ the line x = 0 is a horizontal asymptote.
- b) Hence the graph $y = 1 + \frac{1}{x^2 1}$ is obtained from the graph $y = \frac{1}{x^2 1}$ by translating one unite upward.

Problem GRA3_20.

Sketch the graph of $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.

Solution:

The graph of $y = e^x - e^{-x}$ is obtained by subtraction of ordinates of the graphs $y = e^x$ and $y = e^{-x}$.

The graph of $y = e^x + e^{-x}$ is obtained by summing the ordinates of the graphs $y = e^x$ and $y = e^{-x}$.

The graph of $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ is obtained by division of ordinates of the graphs $y = e^x - e^{-x}$ and $y = e^x + e^{-x}$.

Features of $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$:

- y = 0 when x = 0
- Let $f(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$, then $f(-x) = \frac{e^{-x} e^{+x}}{e^{-x} + e^{+x}} = -f(x) \implies$ the graph y = f(x) is the graph of an odd function and hence it is symmetric about origin.
- As $x \to +\infty$, $y = \frac{e^x e^{-x}}{e^x + e^{-x}} = \frac{1 e^{-2x}}{1 + e^{-2x}} \to 1 \Rightarrow$ the line y = 1 is a horizontal asymptote of $y = \frac{e^x e^{-x}}{e^x + e^{-x}}$.

Problem GRA3_21.

Sketch the graph of $y = \frac{\cos x - \sin x}{\cos x + \sin x}$

Solution:

$$y = \frac{\cos x - \sin x}{\cos x + \sin x} = \frac{\cos \frac{\pi}{4} \cos x - \sin \frac{\pi}{4} \sin x}{\cos \frac{\pi}{4} \cos x + \sin \frac{\pi}{4} \sin x} = \frac{\cos \left(x + \frac{\pi}{4}\right)}{\cos \left(x - \frac{\pi}{4}\right)} \Rightarrow y = \frac{\cos \left(x + \frac{\pi}{4}\right)}{\cos \left(x - \frac{\pi}{4}\right)}.$$

The graph $y = \cos\left(x + \frac{\pi}{4}\right)$ is obtained by translating the graph $y = \cos x$ through $\frac{\pi}{4}$ units to the

The graph $y = \cos\left(x - \frac{\pi}{4}\right)$ is obtained by translating the graph $y = \cos x$ through $\frac{\pi}{4}$ units to the right.

The graph
$$y = \frac{\cos\left(x + \frac{\pi}{4}\right)}{\cos\left(x - \frac{\pi}{4}\right)}$$
 is obtained by division of ordinates of the graphs $y = \cos\left(x + \frac{\pi}{4}\right)$

and
$$y = \cos\left(x - \frac{\pi}{4}\right)$$
.

Features of the graph
$$y = \frac{\cos\left(x + \frac{\pi}{4}\right)}{\cos\left(x - \frac{\pi}{4}\right)}$$
:

- • y = 0 when $\cos\left(x + \frac{\pi}{4}\right) = 0$, i.e., $x = \frac{\pi}{4} + \pi n$, n integral.
- $\cos\left(x \frac{\pi}{4}\right) = 0$, as $x = \frac{3\pi}{4} + \pi n$, n integral

$$\Rightarrow \text{ as } x \to \frac{3\pi}{4} + \pi n, \ y = \frac{\cos\left(x + \frac{\pi}{4}\right)}{\cos\left(x - \frac{\pi}{4}\right)} \to \infty, \text{ and hence the lines } x = \frac{3\pi}{4} + \pi n, n \text{ integral, are the}$$

vertical asymptotes.

Problem GRA3 22.

Use the graph of $y = x^2 - 1$ to sketch the graph of $y = (x^2 - 1)^2$.

$$f(x) = x^2 - 1 f'(x) = 2x$$

Sign of $f'(x)$

$$y = [f(x)]^2$$
 $\frac{dy}{dx} = 2f(x)f'(x)$ $\frac{dy}{dx} = 4x(x-1)(x+1)$

Sign of $\frac{dy}{dx}$

Problem GRA3_23.

Use the graph of $y = \cos x$ to sketch the graph of $y = (\cos x)^2$.

Solution:

$$f(x) = \cos x$$
 $f'(x) = -\sin x$
Critical points are $n\pi$, n -integral
Sign of $f'(x)$

$$y = [f(x)]^2 \quad \frac{dy}{dx} = 2f(x)f'(x) \quad \frac{dy}{dx} = -2\cos x \sin x = -\sin 2x$$

Critical points are $n\frac{\pi}{2}$, n - integral

Sign of
$$\frac{dy}{dx}$$

Problem GRA3 24.

Use the graph of $y = 3x - \frac{x^3}{4}$ to sketch the graph of. $y = \left(3x - \frac{x^3}{4}\right)^3$

Solution:

$$f(x) = 3x - \frac{x^3}{4}$$
 $f'(x) = 3 - \frac{3}{4}x^2$

Sign of f'(x)

$$y = [f(x)]^3 \frac{dy}{dx} = 3[f(x)]^2 f'(x) \frac{dy}{dx} = 3(3x - \frac{x^3}{4})^2 (3 - \frac{3}{4}x^2)$$

$$\frac{dy}{dx} = \frac{9}{64}x^2 (2\sqrt{3} - x)^2 (2\sqrt{3} + x)^2 (2 - x)(2 + x)$$
Sign of $\frac{dy}{dx}$

$$\frac{-0 - 0 + 0 + 0 - 0 - \frac{1}{2\sqrt{3}} + \frac{1}{2$$

Problem GRA3_25.

Use the graph of $y = 4 \sin x$ to sketch the graph of $y = (4 \sin x)^3$.

Solution:

$$f(x) = 4\sin x$$
 $f'(x) = 4\cos x$
Critical points are $\frac{\pi}{2} + n\pi$, n - integral
Sign of $f'(x)$

$$y = [f(x)]^3$$
 $\frac{dy}{dx} = 3[f(x)]^2 f'(x)$ $\frac{dy}{dx} = 3(4\sin x)^2 (4\cos x) = 96\sin x \sin 2x$

Critical points are $n\frac{\pi}{2}$, n-integral

Sign of
$$\frac{dy}{dx}$$

Problem GRA3 26.

For the function $f(x) = 3x - \frac{x^3}{4}$ use the graph of y = f(x) to sketch the graphs of a) $y = \sqrt{f(x)}$, b) $y^2 = f(x)$.

Solution:

Features:

- $y = \sqrt{f(x)}$ is defined only where $f(x) \ge 0$.
- f(x) = 0 where $x = \pm 2\sqrt{3}$ or $x = 0 \Rightarrow \frac{dy}{dx} = \frac{f'(x)}{2\sqrt{f(x)}}$ is not defined at

 $x = \pm 2\sqrt{3}$ and $x = 0 \Rightarrow (\pm 2\sqrt{3}, 0)$ and (0,0) are critical points.

•
$$\frac{dy}{dx} = \frac{3}{8} \frac{4 - x^2}{\sqrt{f(x)}} \rightarrow \infty \text{ as } x \rightarrow \pm 2\sqrt{3}$$
 or $x \rightarrow 0^+ \Rightarrow$ the tangent lines at $(\pm 2\sqrt{3}, 0)$ and $(0,0)$ are

vertical

• (2,4) is a maximum turning point of $y = f(x) \Rightarrow$ (2,2) is a maximum turning point of $y = \sqrt{f(x)}$.

• $y = \sqrt{f(x)}$ lies below y = f(x) where f(x) > 1. $y = \sqrt{f(x)}$ lies above y = f(x) where f(x) < 1. $y = \sqrt{f(x)}$, y = f(x) intersect where f(x) = 1 or f(x) = 0. b)

 $y = \sqrt{f(x)} \Rightarrow y^2 = f(x) \Rightarrow (-y)^2 = f(x)$. Hence the graph $y^2 = f(x)$ is obtained by reflecting $y = \sqrt{f(x)}$ in the x-axis.

The graph $y^2 = f(x)$ has vertical tangent lines at the critical points $(\pm 2\sqrt{3},0)$ and (0,0).

Problem GRA3 27.

For the function $f(x) = 4 \sin x$ use the graph y = f(x) to sketch the graphs of a) $y = \sqrt{f(x)}$, b) $y^2 = f(x)$.

Solution:

a)

Features:

- $y = \sqrt{f(x)}$ is defined only where $f(x) \ge 0$.
- f(x) = 0 where $x = n\pi$, n integral $\Rightarrow \frac{dy}{dx} = \frac{f'(x)}{2\sqrt{f(x)}}$ is not defined at $x = n\pi$, n integral $\Rightarrow (m\pi, 0)$, n integral, are critical points.

- $\frac{dy}{dx} = \frac{2\cos x}{\sqrt{f(x)}} \to \infty$ as $x \to (2\pi n)^+$, *n* integral, or $x \to (n\pi)^-$, *n* odd \Rightarrow the tangent lines at $(n\pi, 0)$, *n* integral, are vertical.
- $\left(\frac{\pi}{2} + 2\pi n, 4\right)$, *n* integral, are maximum turning of $y = f(x) \Rightarrow \left(\frac{\pi}{2} + 2\pi n, 2\right)$, *n* integral, are maximum turning points of $y = \sqrt{f(x)}$.
- $y = \sqrt{f(x)}$ lies below y = f(x) where f(x) < 1. $y = \sqrt{f(x)}$ lies above y = f(x) where f(x) > 1. $y = \sqrt{f(x)}$, y = f(x) intersect where f(x) = 1 or f(x) = 0. b)

 $y = \sqrt{f(x)} \Rightarrow y^2 = f(x) \Rightarrow (-y)^2 = f(x)$. Hence the graph $y^2 = f(x)$ is obtained by reflecting $y = \sqrt{f(x)}$ in the x-axis. The graph $y^2 = f(x)$ has vertical tangent lines at the critical points $(\pi n, 0)$, n integral.

Problem GRA3 28.

Use the graphs of $y = \ln u$ and $u = \sin x$ ($0 \le x \le 2\pi$) to sketch the graph of $y = \ln(\sin x)$ ($0 \le x \le 2\pi$).

Features of the graph $y = \ln(\sin x)$:

- $y = \ln u$ is defined where $u = \sin x > 0 \Rightarrow$ domain $\{x : 0 < x < \pi\}$.
- Vertical asymptote of $y = \ln u$ at u = 0.

But $u = \sin x$ and $\sin x = 0$ at x = 0 or $x = \pi$ $\Rightarrow x = 0$ and $x = \pi$ are vertical asymptotes of $y = \ln(\sin x)$.

- $u = \sin x \le 1 \implies y = \ln u \le 0$.
- $y = \ln u$ is an increasing function $\Rightarrow y = \ln(\sin x)$ increases as $\sin x$ increases and decreases as $\sin x$ decreases.
- The maximum turning point $(\frac{\pi}{2}, 1)$ of $u = \sin x$ corresponds to the maximum turning point

 $(\frac{\pi}{2}, 0)$ of $y = \ln(\sin x)$.

Problem GRA3 29.

Use the graphs of $y = 2^u$ and $u = \cos x$ ($0 \le x \le 2\pi$) to sketch the graph of $y = 2^{\cos x}$ ($0 \le x \le 2\pi$).

Solution:

Features of the graph $y = 2^{\cos x}$:

- $v = 2^{\cos x}$, domain $\{x : 0 \le x \le 2\pi\}$.
- $y = 2^x$ is an increasing function $\Rightarrow y = 2^{\cos x}$ increases as $\cos x$ increases and decreases as $\cos x$ decreases.
- $(\pi, -1)$ is a minimum turning point of $u = \cos x \implies (\pi, 2^{-1})$ is a minimum turning point of $y = 2^{\cos x}$.
- (0, 1) and $(2\pi, 1)$ are maximum turning points of $u = \cos x \implies (0, 2)$ and $(2\pi, 2)$ are maximum turning points of $y = 2^{\cos x}$.

Problem GRA3 30.

Use the graphs of $y = \ln u$ and $u = x^2 - 3$ (an even function) to sketch the graph of $y = \ln(x^2 - 3)$.

Solution:

Features of the graph $y = \ln(x^2 - 3)$:

- $y = \ln(x^2 3)$ is defined where $u = x^2 3 > 0$.
- $\ln((-x)^2 3) = \ln(x^2 3) \Rightarrow$ the graph $y = \ln(x^2 3)$ is the graph of an even function.
- Vertical asymptote of $y = \ln u$ at u = 0.

But $u = x^2 - 3$ and $x^2 - 3 = 0$ at $x = \pm \sqrt{3}$ $\Rightarrow x = -\sqrt{3}$ and $x = \sqrt{3}$ are vertical asymptotes of $y = \ln(x^2 - 3)$.

• $y = \ln u$ is an increasing function $\Rightarrow y = \ln(x^2 - 3)$ increases as $x^2 - 3$ increases and decreases as $x^2 - 3$ decreases.

Problem GRA3 31.

Sketch (showing critical points) the graph of $x^2 - 4y^2 = 4$.

Solution:

 $x^2 - 4y^2 = 4$. Clearly x^2 , $y^2 \ge 0 \Longrightarrow$ domain $\{x: |x| \ge 2\}$. Take the derivative of both sides with respect to x. Consider y as a function of x and use the chain rule. Then we have

$$2x - 8y \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{1}{4} \left(\frac{x}{y}\right).$$

As $y \to 0$, $x \to \pm 2 \Rightarrow \frac{dy}{dx} \to \infty$ and the curve has vertical tangent at the critical points (-2,0) and

As
$$x = 0$$
, $y = \pm 1 \Rightarrow \frac{dy}{dx} = 0$ and the curve has horizontal tangent at (0,-1) and (0,1).

Clearly the curve is symmetric about the lines y = 0 and x = 0 as the transformation $y \rightarrow -y$ and $x \rightarrow -x$ leave the Cartesian equation of the curve unchanged.

$$x^2 - 4y^2 = 4 \Rightarrow y = \pm \frac{|x|}{2} \left(1 - \frac{4}{x^2}\right)^{\frac{1}{2}}$$
. By expansion for the large values of x we have $y = \pm \frac{|x|}{2} \left(1 - \frac{2}{x^2} + ...\right) \Rightarrow y = \pm \frac{x}{2} + 0\left(\frac{1}{x}\right)$. Hence the curve has an oblique asymptotes $y = \pm \frac{x}{2}$ as $x \to \pm \infty$.

Problem GRA3 32.

Sketch (showing critical points and stationary points) the graph of $x^3 + y^3 = 1$.

Solution:

 $x^3 + y^3 = 1$. Take the derivative of both sides with respect to x. Consider y as a function of x and use the chain rule. Then we have $3x^2 + 3y^2 \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\left(\frac{x}{v}\right)^2$.

As $y \to 0$, $x \to 1 \Rightarrow \frac{dy}{dx} \to -\infty$ and the curve has a vertical tangent at (1,0)

As x = 0, $y = 1 \Rightarrow \frac{dy}{dx} = 0$ and the curve has a horizontal tangent at (0,1),

Clearly the curve is symmetric about y = x, since the transformation $y \leftrightarrow x$ leaves the Cartesian equation of the curve unchanged.

$$x^3 + y^3 = 1 \Rightarrow y = -x \left(1 - \frac{1}{x^3}\right)^{\frac{1}{3}}$$
. By expansion for the large values of x we have

$$y = -x \left(1 - \frac{1}{3x^3} + ...\right) \Rightarrow y = -x + 0 \left(\frac{1}{x}\right)$$
. Hence the curve has an oblique asymptote $y = -x$ as $x \to \pm \infty$.

Problem GRA3 33.

Sketch (showing critical points and stationary points) the graph of $x^2 + y^2 + xy = 3$

Solution:

 $x^2 + y^2 + xy = 3$. Take the derivative of both sides with respect to x. Consider y as a function of x and use the chain and product rules. Then we have

$$2x + 2y\frac{dy}{dx} + y + x\frac{dy}{dx} = 0 \Rightarrow (x + 2y)\frac{dy}{dx} = -(2x + y) \Rightarrow \frac{dy}{dx} = -\left(\frac{2x + y}{x + 2y}\right).$$
 Substituting of

x = -2y in the equation of the curve gives $x + 2y = 0 \Rightarrow$

$$4y^{2} + y^{2} - 2y^{2} = 3 \Rightarrow y^{2} = 1.$$
Hence
$$\begin{cases} y = -1 \\ x = 2 \end{cases} \text{ or } \begin{cases} y = 1 \\ x = -2 \end{cases}.$$

Hence
$$\begin{cases} x = 2 \end{cases}$$
 or $\begin{cases} x = -2 \end{cases}$

In either case, $2x + y \ne 0$. Hence as $x + 2y \to 0$, $\frac{dy}{dx} \to \infty$ and the curve has vertical tangents at (2, -1) and (-2, 1).

Similarly, $2x + y = 0 \Rightarrow x^2 = 1$.

Hence
$$\begin{cases} x = -1 \\ y = 2 \end{cases}$$
 or
$$\begin{cases} x = 1 \\ y = -2 \end{cases}$$

In either case, $x + 2y \ne 0$. Hence $2x + y = 0 \Rightarrow \frac{dy}{dx} = 0$ and the curve has horizontal tangents at (-1,2) or (1,-2).

Clearly the curve is symmetric about y = x and y = -x, since the transformation $y \leftrightarrow x$ and $y \leftrightarrow x$ leave the Cartesian equation of the curve unchanged.

Problem GRA3 34.

Find the equation of the tangent to the curve xy(x+y)+16=0 at the point on the curve where the gradient is -1.

Answer: y + x + 4 = 0.

Solution:

$$x^2y + xy^2 + 16 = 0$$

Consider y as a function of x and take the derivative of both sides with respect to x using the chain and product rules:

$$2xy + x^2 \frac{dy}{dx} + y^2 + 2xy \frac{dy}{dx} = 0$$

$$(x^2 + 2xy)\frac{dy}{dx} = -(y^2 + 2xy)$$

$$\frac{dy}{dx} = -1 \Rightarrow -(x^2 + 2xy) = -(y^2 + 2xy)$$

$$\Rightarrow x^2 = y^2 \Rightarrow y = x \text{ or } y = -x.$$

Substitution of y = x in the equation of the curve gives

$$x^2x + xx^2 + 16 = 0 \Rightarrow 2x^3 = -16 \Rightarrow x = -2$$
 and hence $y = -2$.

Substitution of y = -x in the equation of the curve gives

$$x^{2}(-x) + x(-x)^{2} + 16 = 0 \Rightarrow 16 = 0$$
.

Hence the tangent touches the curve at the point $(x_0, y_0) = (-2,2)$ where the gradient k = -1. So the equation of the tangent is $y - y_0 = k(x - x_0) \Rightarrow y + 2 = -(x + 2) \Rightarrow y + x + 4 = 0$.

Problem GRA3 35.

Sketch the graph of $y = \frac{x^2 + 1}{x^2 - 1}$. Use this graph to solve the inequality $\frac{x^2 + 1}{x^2 - 1} < 1$.

Answer: $\{x : -1 < x < 1\}$.

Solution:

$$\frac{x^2+1}{x^2-1} = \frac{x^2-1+2}{x^2-1} = 1 + \frac{2}{x^2-1}$$

The graph $y = \frac{2}{x^2 - 1}$ has been translated one unit upward. y = 1 is asymptote as $x \to \infty$. The graph $y = \frac{2}{x^2 - 1} = \frac{1}{\frac{x^2}{2} - \frac{1}{2}}$ is a reciprocal of $y = \frac{x^2}{2} - \frac{1}{2}$.

Consider the graph y = f(x) and $y = \frac{1}{f(x)}$, where $f(x) = \frac{x^2}{2} - \frac{1}{2}$.

Features

- y = f(x), $y = \frac{1}{f(x)}$ have the same sign.
- f(x) = 0 when $x = \pm 1 \Rightarrow$ the lines x = -1 and x = 1 are vertical asymptotes of $y = \frac{1}{f(x)}$
- As $x \to \infty$, $f(x) \to +\infty \Rightarrow \frac{1}{f(x)} \to 0^+$.
- Minimum turning point of y = f(x) is $\left(0, -\frac{1}{2}\right) \Rightarrow$ maximum turning point of $y = \frac{1}{f(x)}$ is (0, -2).

By inspection of the graph, $\frac{x^2+1}{x^2-1} < 1$ for -1 < x < 1.

Problem GRA3 36.

Sketch the graph of $y = \sin 2x$ for $0 \le x \le 2\pi$. Use this graph to solve the inequalities a) $\sin 2x \ge \frac{1}{2}$, for $0 \le x \le 2\pi$; b) $\left|\sin 2x\right| \ge \frac{1}{2}$, for $0 \le x \le 2\pi$.

Answer: a)
$$\frac{\pi}{12} \le x \le \frac{5\pi}{12}, \frac{13\pi}{12} \le x \le \frac{17\pi}{12}$$
;
b) $\frac{\pi}{12} \le x \le \frac{5\pi}{12}, \frac{13\pi}{12} \le x \le \frac{17\pi}{12}, \frac{7\pi}{12} \le x \le \frac{11\pi}{12}, \frac{19\pi}{12} \le x \le \frac{23\pi}{12}$.

a)
$$\sin 2x = \frac{1}{2} \Leftrightarrow 2x = (-1)^n \sin^{-1} \frac{1}{2} + \pi n$$
, *n* integral

$$\Rightarrow x = (-1)^n \frac{\pi}{12} + \frac{n}{2} \pi, \ n = 0, 1, 2, \dots (x \ge 0).$$

But $0 \le x \le 2\pi \Rightarrow$ there are exactly four values of x, namely $\frac{\pi}{12}$, $\frac{5}{12}\pi$, $\frac{13}{12}\pi$, $\frac{17}{12}\pi$.

By inspection of the graph, $\sin 2x \ge \frac{1}{2}$ for $\frac{\pi}{12} \le x \le \frac{5\pi}{12}$ or $\frac{13\pi}{12} \le x \le \frac{17\pi}{12}$.

b)
$$\left| \sin 2x \right| \ge \frac{1}{2} \Leftrightarrow \sin 2x \ge \frac{1}{2} \text{ or } \sin 2x \le -\frac{1}{2}$$

$$\sin 2x = -\frac{1}{2} \Leftrightarrow 2x = (-1)^n \sin^{-1} \left(-\frac{1}{2}\right) + \pi n$$
, *n* integral

$$\Rightarrow x = (-1)^{n+1} \frac{\pi}{12} + \frac{n}{2} \pi, \ n = 1, 2, ... \ (x \ge 0) \ .$$

But $0 \le x \le 2\pi \Rightarrow$ there are exactly four values of x, namely $\frac{7}{12}\pi$, $\frac{11}{12}\pi$, $\frac{19}{12}\pi$, $\frac{23}{12}\pi$.

The equation $\sin 2x = \frac{1}{2}$ was solved in a).

By inspection of the graph, $|\sin 2x| \ge \frac{1}{2}$ for

$$\frac{\pi}{12} \le x \le \frac{5\pi}{12}, \frac{13\pi}{12} \le x \le \frac{17\pi}{12}, \frac{7\pi}{12} \le x \le \frac{11\pi}{12}, \frac{19\pi}{12} \le x \le \frac{23\pi}{12}.$$

Problem GRA3_37.

Sketch the graph of $f(x) = 1 - \frac{9}{x^2} + \frac{18}{x^4}$. Use this graph to find the set of values of the real number k such that the equation f(x) = k has four real distinct roots.

Answer:
$$-\frac{1}{8} < k < 1$$
.

Solution:

$$y = 1 - \frac{9}{x^2} + \frac{18}{x^4}$$
Domain $\{x : x \neq 0\}$

$$\frac{dy}{dx} = \frac{18}{x^3} - \frac{72}{x^5}$$
Sign of $\frac{dy}{dx}$

$$\frac{-0}{-2} + \frac{0}{0} + \frac{+}{2}$$

$$(-2, -1/8)$$

$$(2, 1/8)$$

As $x \to 0$, $y \to +\infty \Rightarrow$ the line x = 0 is a vertical asymptote.

As $x \to \infty$, $y \to 1^- \Rightarrow$ the line y = 1 is a horizontal asymptote.

Real solution of the equation f(x) = k are given by x-values where y = f(x) and y = k intersect. Hence the equation has four real distinct roots for the following set of k

$${k:-\frac{1}{8}< k<1}.$$

Problem GRA3 38.

Find the gradient of the tangent to the curve $y = e^x$ which passes through the origin. Hence find the values of the real number k for which the equation $e^x = kx$ has exactly two real solutions.

Answer: e, k > e.

Let the gradient of the tangent from the origin to the curve be equal to a. Then

 $a = (e^x)'$, i.e., $a = e^x$. In addition at the point (x, y) where the tangent touch the curve $y = e^x$ and simultaneously y = ax. Hence we have the simultaneous equations:

$$\begin{bmatrix} a = e^x \\ y = e^x \Leftrightarrow ax = e^x \Leftrightarrow xe^x = e^x \Leftrightarrow x = 1 \\ y = ax \end{bmatrix}$$

$$\begin{bmatrix} a = e^x \\ x = e^x \Leftrightarrow x = 1 \\ y = ax \end{bmatrix}$$

Real solutions of the equation $e^x = kx$ are given by x-values where $y = e^x$ and y = kx intersect. Hence the equation has two real distinct roots for the following set of $k \{k : k > e\}$.

Problem GRA3_39.

The chord AB of a circle of radius r subtends an angle of 2θ radians at the centre O. The perimeter of the minor segment AB is k times the perimeter of the triangle OAB. Show that

 $k + (k-1)\sin\theta = \theta$. Use a graphical method to obtain an estimate of θ in the case when $k = \frac{1}{2}$.

Answer: 0.34.

Solution:

The perimeter of the triangle OAB is $2r + 2r \sin \theta$. The perimeter of the minor segment $2r \sin \theta + 2\theta r$.

Hence $2r\sin\theta + 2\theta r = k(2r + 2r\sin\theta)$

$$\sin \theta + \theta = k(1 + \sin \theta)$$

$$k + (k-1)\sin\theta = \theta$$

If
$$k = \frac{1}{2}$$
, then $\frac{1}{2} - \frac{1}{2}\sin\theta = \theta$

$$\Rightarrow \sin \theta = 1 - 2\theta$$
.

Clearly solution of the equation $\sin \theta = 1 - 2\theta$ are given by θ -values where $y = \sin \theta$ and $y = 1 - 2\theta$ intersect.

Note that $0 < 2\theta < \pi \Rightarrow 0 < \theta < \frac{\pi}{2}$

By inspection of the graph $\theta \approx 0.34$.

Problem GRA3 40.

A taut belt passes round two circular pulleys of radius 6 cm and 2 cm respectively. The straight portions of the belt are common tangents to the two pulleys and are inclined to each other at an angle of 2 θ radians. The total length of the belt is 44 cm. Show that $\frac{\pi}{2} + \theta + \cot \theta = \frac{11}{4}$ and hence use a graphical method to obtain an estimate of θ .

Answer: $\theta \approx 2.48$

Solution:

Consider the rectangular triangle OAP. $\angle OPA = \theta \Rightarrow AP = 6\cot\theta$. Analogously $BP = 6\cot\theta$. In the quadrilateral OAPB the sum of angles is $\angle AOB + \pi + 2\theta = 2\pi$

$$\Rightarrow 2\pi - \angle AOB = \pi + 2\theta$$
.

Hence the length of the larger are AB is $6(\pi + 2\theta)$.

So the length of the belt from the point P to the circular pulley of radius 6 cm and round it is $2 \cdot 6 \cot \theta + 6(\pi + 2\theta) = 12 \cot \theta + 6\pi + 12\theta$. The figure PA'B' is similar to $PAB \Rightarrow$ the length of the second part of the belt is $\frac{2}{6}$ of the first part.

Hence the belt has the length $(12 \cot \theta + 6\pi + 12\theta)(1 + \frac{1}{3}) = 44$

 $\cot \theta + \frac{\pi}{2} + \theta = \frac{11}{4}$. Clearly solutions of the equations $\cot \theta = \frac{11}{4} - \frac{\pi}{2} - \theta$ are given by θ -values

where $y = \cot \theta$ and $y = \frac{11}{4} - \frac{\pi}{2} - \theta$ intersect. Note that $0 < \theta < \pi$.

By inspection of the graph $\theta \approx 2.48$.