LOGARITHMS & EXPONENTIALS ASSESSMENT TASK

Marks (1) Given that $\log_x 5 = 1.32$ and $\log_x 6 = 1.78$, find : 6 (a) $\log_x 25$ (b) $\log_x (1.2)$ (c) $\log_x 1$ (d) $\log_x 6x$ (2) (a) Evaluate $\log_3\left(\frac{1}{27}\right)$ 4 (b) Calculate $\log_2 5$ correct to *two* decimal places. (3) Sketch the graph, without calculus, the function $y = \log_e(x - 1)$ 2 and state the domain and range. (a) e^{5x+2} (b) $\ln(x+1)$ 8 (4) Differentiate: (c) $(2x+1)e^{3x}$ (d) $\frac{\ln x}{e^x}$ (e) $\left[\log_e(2x) - 3\right]^5$ (5) Find: (a) $\int e^{5-3x} dx$ (b) $\int \frac{1}{2x+1} dx$ 5 (c) $\int_{0}^{\ln 2} \frac{e^{x}+1}{e^{x}} dx$

(6) Find the equation of the tangent to the curve $y = x \ln x$ at the point on the curve whose x-coordinate is 1.

(7) At any point on the curve y = f(x), the gradient function is given by

$$\frac{dy}{dx} = \frac{2x}{x^2 + 1}.$$

The point (0, 2) lies on the curve. Find the equation of the curve.

(8) The region bounded by the curve $y = e^{2x}$, the line x = 1 and the coordinates axes is rotated through 360° about the x-axis.

- (a) Find the area of the region.
- (b) Find the volume of the solid of revolution.

(9) Solve
$$\log_2(x+1) - \log_2(x-1) = 2$$
.

3

3

(10) (a) Use the trapezoidal rule with 3 function values to approximate

$$\int_{1}^{2} x e^{x^2} dx.$$

- (b) Find the exact area of the above integral.
- (c) Calculate the percentage error.

(11) A function is defined by the following:

$$f(x) = \begin{cases} e^{2x+1} & \text{for } x \ge 0 \\ e & \text{for } x < 0. \end{cases}$$

- (a) Sketch the above function.
- (b) Calculate the area under the curve and above the x-axis between x = -2 and x = 2.

Answers to Logs & exponentials task

- (1) (a) 2.64 (b) 0.46 (c) 0
- (d) 2.78
- (2) (a) -3 (b) 2.32
- (3)

D: x > 1

R:All real y

- (4) (a) $5e^{5x+2}$
- (b) $\frac{1}{x+1}$
- (c) $e^{3x}(6x+5)$ (d) $\frac{\frac{1}{x}-\ln x}{e^x}$
- (e) $\frac{5}{x}[\ln{(2x)} 3]^4$
- (5) (a) $-\frac{1}{3}e^{5-3x} + c$ (b) $\frac{1}{2}\ln(2x+1) + c$
 - (c) $\ln 2 + \frac{1}{2}$
- (6) x-y-1=0
- (7) $f(x) = \ln(x^2 + 1) + 2$
- (8) (a) $\frac{1}{2}(e^2-1)u^2$ (b) $\frac{\pi}{4}(e^4-1)u^2$

(9) $x = \frac{5}{3}$

(10) (a)

x	1	1.5	2
y	2.72	14.23	109.20

 $A \approx 35.0945$ sq. units

(b)
$$\frac{e}{2}(e^3-1)u^2$$

(c) $\approx 35\%$

(b) $\frac{e}{2}(3+e^4)$.