J.M.J.

MARCELLIN COLLEGE RANDWICK

YEAR 12 HSC

ASSESSMENT TASK # 2

EXTENSION ONE

MATHEMATICS

2005

OPICS: BINOMIAL THEOREM

PERMS & COMBS.

Weighting: 10% of H.S.C. Assessment Mark.

STUDENT NAME:

MARK:

PERCENTAGE:

RANK ON THIS TASK:

Time Allowed:

40 minutes.

Directions:

- Answer all questions on separate lined paper.
- Show all necessary working.
- Marks may not be awarded for careless or badly arranged work.

Outcomes examined:

PE3 - Solves problems involving permutations and combinations.

 ${\bf HE3}-{\bf Uses}$ a variety of strategies to investigate Mathematical models of situations involving binomial probability.

Question One (2 marks)

Write the 5th term in the expansion of: $(a+b)^{11}$

Question Two (3 marks)

8 people are to be seated randomly around a round table. What is the probability that a particular husband and wife will <u>not</u> be seated next to each other?

Question Three (5 marks)

- a) How many seven letter arrangements of the letters of the word COLLEGE are possible?
- b) In how many of the seven letter arrangements in a) above will the 2 L's be next to each other?
- c) How many seven letter arrangements can be made from the letters of the word COLLEGE if the 2nd letter must be a G and the 1st letter cannot be an L?

Question Four (2 marks)

Find the term independent of x in the expansion of $(x^2 + \frac{1}{x})^{18}$

Question Five (4 marks)

A machine produces electronic components for computers. Sampling shows that the probability of a particular component being faulty is 12%. In a random sample of 16 components, what is the probability that:

- a) exactly 1 component is faulty? (Answer correct to 3 decimal places)
- b) less than 3 components are faulty? (Answer correct to 3 decimal places)

Question Six (5 marks)

- a) Write down the binomial expansion of $(1 + x)^n$
- b) By differentiating $x^3 (1 + x)^n$ and its binomial expansion, show that:

$$\sum_{r=0}^{n} (r+3)^{n} C_{r} = (n+6) \cdot 2^{n-1}$$

SOLUTIONS

MARKING SCHEME

Question One

$$T_{k+1} = {}^{n}C_{k} a^{n-k} b^{k}$$

$$T_5 = {}^{11}C_4 a^7 b^4$$

or 330a7b4

Question Two

No. of ways of arranging 8 people in a circle = 5040

Treat husband and wife as 1 = 7 people = 720 ways

But husband a wife could alternate, positions

: Total waystogether = 1440

: P(not together) = 5040-1440

= 5 7 I mark for general term

) I mark for correct tem in either form

I mark for total number of ways.

I mark for total ways together

I mark for correct probability

SOLUTIONS

MARKING SCHEME

Question Three

a)
$$\frac{7!}{2!2!}$$
 = 1260

- b) Treat 2L's as one.
- .. Total number of ways with L's next to each other = $\frac{6!}{2!}$

= 360

c) No. of possible letters
as 1st letter = 3

No. of possible letters as
and letter = 1

Remaining 5 letters:

If Cor O used as 1st

letter, 5! = 30

If an E used as 1st letter, $\frac{5!}{2!} = 60$

: Total ways = 3 x 1 x 90 = 270.

I mark for correct no. of ways.

I mark for correct no. of ways.

I mark for no of letters possible as "lst letter"

I mark for total no. of ways letters after the 1st 2 can be arranged.

I mark for multiplying the 3 different restrictions correctly together.

SOLUTIONS

MARKING SCHEME

Question Four

$$T_{k+1} = {}^{18}C_k (x^2)^{18-k} (x^{-1})^k$$

$$= {}^{18}C_k x^{36-2k} x^{-k}$$

$$= {}^{18}C_k x^{36-3k}$$

New term indep of x

When k = 12

= Term indep. of $x = {}^{18}C_{12}$ = 18564 I mark for correct general term

I mark for correct term

Question Five

$$= {}^{16}C_{1}(0.12)(0.88)^{15}$$
$$= 0.282(3dp)$$

=
$$P(NoF) + P(1F) + P(2F)$$
 | mark for correction = ${}^{16}C_{0}(0.88)^{16} + ANSWER + {}^{16}C_{2}(0.12)^{2}(0.88)^{14}$

= 0.700 (3dp)

I mark for correct binomial expression

I mark for correct prob (3dp)

1 mark for correct breakdown

(0.12)2 (0.88)14 2 of possibilities

I mark for correct prob. (3dp)

SOLUTIONS

MARKING SCHEME

Question Six

a)
$$(1+x)^n$$

Differentiating both sides:

$$x^3 n (1+x)^{n-1} + 3x^2 (1+x)^n = 3$$

$$x^{2}(1+x)^{n-1}[xn+3(1+x)]$$

let x=1

letting x=1 and correctly equating to regid result.

Imark for correct expansion

I mark for this statement

 $x^{3}n(1+x)^{n-1} + 3x^{2}(1+x)^{n} = 3^{n}C_{0}x^{3} + 4^{n}C_{2}x^{3} + \dots + (n+3)^{n}C_{n}x^{n+2}$

 $\chi^{2}(1+x)^{n-1}[xn+3(1+x)] = \frac{C}{C}(c+3)^{n}C_{r}x^{r+2}$

I mark for

simplification

I mark for correct differentiation of both sides of equality