J.M.J.Ch.

MARCELLIN COLLEGE RANDWICK

YEAR 11 ACCELERATED

MATHEMATICS

HSC ASSESSMENT TASK # 2

2006

Weighting: 20% of HSC Assessment Mark.

S TASK:	/
	ged work. swer page.

H1 - seeks to apply mathematical techniques to problems in a wide range of practical contexts
 H4 - expresses practical problems in mathematical terms based on simple given models
 H5 - applies appropriate techniques from the study of calculus and trigonometry to solve problems

H6 – uses the derivative to determine the features of the graph of a function H7 – uses the features of a graph to deduce information about the derivative

• H8 - uses techniques of integration to calculate areas and volumes

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

Question 1

a If $y = e^x \cos x$, find $\frac{dy}{dx}$.

b.

Figure not to scale

PS and QR are arcs of concentric circles with O as the centre. Find the perimeter of the shaded region. Leave your answer in exact form.

- c. i. Differentiate $\cos^3 x$ with respect to x.
- Hence or otherwise, find $\int \cos^2 x \sin x \, dx$.
- d. Solve the equation $2\sin 2x + 1 = 0$ in the domain $0 \le x \le \pi$.
- e. If $\frac{dy}{dx} = 3\sin x + \sec^2 x$, find y in terms of x, if y = 4 when x = 0.
- f. i. Sketch the graph of $y = \sin x$ and $y = \cos x$ on the same diagram in the domain $0 \le x \le \frac{\pi}{2}$.
- ii Find the coordinates of their point/s of intersection in this interval.
- iii. Determine the area bounded by the curves and the x-axis for $0 \le x \le \frac{\pi}{2}$.

Question 2

2

. 1

2

a. The rate of decrease of water in a leaking container after t minutes is given by
$\frac{dV}{dt} = -40 + 0.3t$. Initially, there was 2000 cm ³ in the container. Find how much water
remained in the container after 10 minutes.

2

1

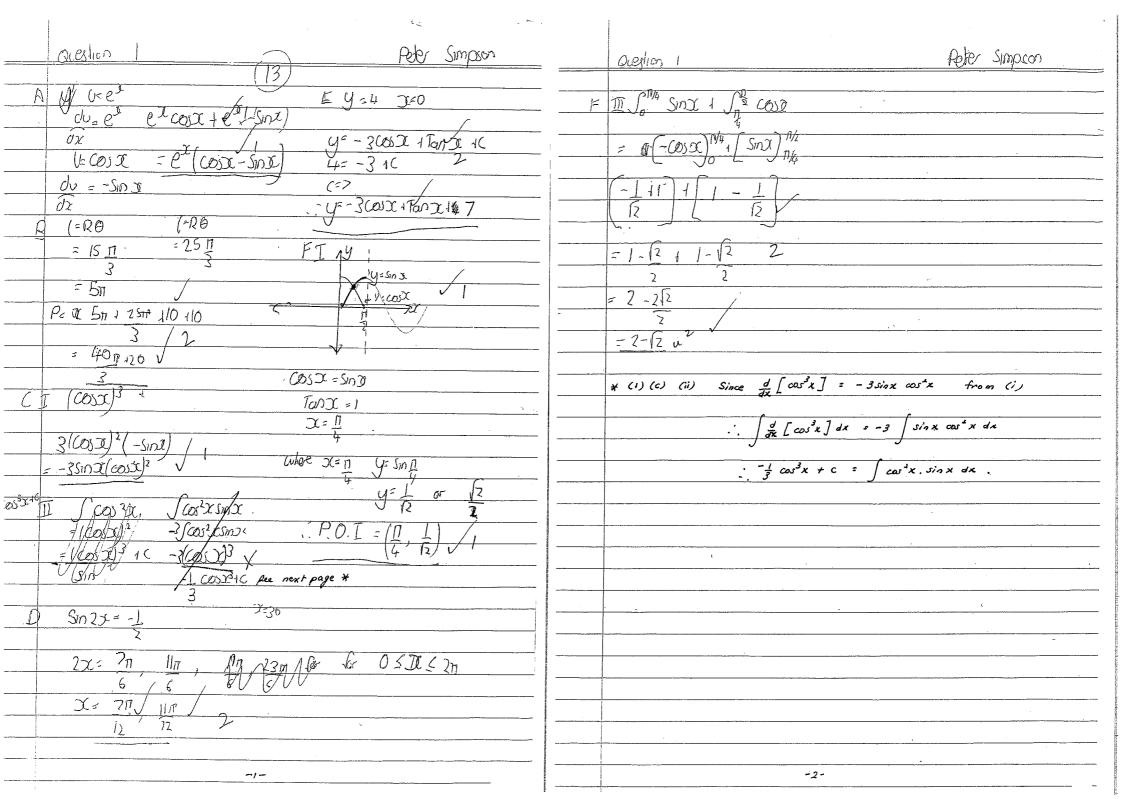
2

2

1

2

1


1

b. An isotope of carbon, C_{14} decays at a rate proportional to the mass present. The rate of change is given by $\frac{dM}{dt} = -kM$ where k is a positive constant and M is the mass present.

- i. Show $M = M_0 e^{-kt}$ is a solution to this equation.
- ii. The half-life of this isotope of C_{14} is 5600 years. This means it takes 5600 years for 100 grams of C_{14} to decay to 50 grams. Find the value of k correct to 3 significant figures.
- iii. Archaeologists use radiocarbon dating to establish the age of discoveries. Calculate the age of an item in which only one-eighth of the original carbon remains.
- c. A particle is moving in a straight line. It starts 2 metres to the right of a fixed point O on the line and at time t seconds its velocity $v ms^{-1}$ is given by $v = 2 4e^{-t}$.
- Find when the particle comes to rest.
- ii. Find the distance travelled by the particle before it comes to rest.
- d. A defective rocket rises vertically upwards and then crashes back to the ground. The rocket's height above the ground at time t seconds after take-off, is h metres, where $h = 12t^2 2t^3$.
- i. When does the rocket crash?
- ii. What is its velocity at this time?

iii. When is the velocity of the rocket zero?

iv. What is its maximum height?

