J.M.J.Ch.

MARCELLIN COLLEGE RANDWICK

YEAR 11 ACCELERATED

HSC ASSESSMENT TASK # 1

MATHEMATICS

2006

Weighting: 40% of HSC Assessment Mark.

STUDENT NAME: / 60

Time Allowed:

90 minutes.

Directions:

- ·Answer all questions on separate lined paper.
- ·Show all necessary working.
- ·Marks may not be awarded for careless or badly arranged work.
- ·Begin your answers to each new question on a new answer page.

N.B. All diagrams are not to scale

Structure:

3 questions each worth 20 marks - Total 60 marks.

OUTCOMES TO BE ASSESSED:

- H1 Seeks to apply mathematical techniques to problems in a wide range of practical contexts
- H5 applies appropriate techniques from the study of calculus and series to solve problems
- H6 uses the derivative to determine the features of the graph of a function
- H7 uses the features of a graph to deduce information about the derivative
- H8 uses techniques of integration to calculate areas and volumes

Ouestion 1

a. Differentiate the following with respect to x:

i.
$$y = x^2(1 + \frac{1}{x})$$

ii.
$$f(x) = \frac{x}{\sqrt{x}}$$

iii.
$$\frac{d}{dx} \left(\frac{9 - x^2}{9 + x^2} \right)$$

b. The tangent at
$$P(1, \frac{1}{2})$$
 on the curve $y = \frac{x}{x+1}$ meets the x-axis at T. Find the coordinates of T.

c. The gradient of a curve is given by
$$\frac{dy}{dx} = 3x^2 - 6x - 9$$

- i. The curve passes through the point (1,-2), find the equation of the curve.
- ii. Find the coordinates of the stationary points and determine their nature.
- iii. Find the coordinates of the point of inflexion.

2

- iv. Sketch the curve, showing all relevant information, for $-2 \le x \le 4$.
- d. Two men set out from towns on roads which meet at right angles and walk towards the intersection. A is 25 km from the intersection and walks 4 km/h. B is 20 km from the intersection and walks at 3 km/h.
- i. Draw a diagram showing all necessary information.
- ii. Show that the distance apart, Z km, after t hours walking is given by $Z = \sqrt{25t^2 320t + 1025}.$
- iii. Hence find their minimum distance apart, and the time taken to reach this point.

Question 2

- a. The 3rd term of an arithmetic series is 7 and the 9th term is 19.
- i. Find the first term and the common difference.
- ii. Find the sum of the first 10 terms.
- b. Find the value of $\sum_{r=0}^{\infty} 3(2^r)$

- c. The limiting sum of a geometric series is 30. Give a possible example of a geometric series that fits these conditions.
- d. The cost of building the first floor of a large building is \$155 000. Each additional storey costs \$32 000 more than the previous one. If the building is to be 24 storeys high, find:
- i. the cost of building the top floor.
- ii. the total cost of the building.
- e. A woman borrows \$20 000 at 18% p.a. reducible interest, and pays it off in equal monthly instalments.
- i. Express the interest rate as a monthly rate in decimal form.
- ii. Show that the amount she owes at the end of the second month is.
- $A_2 = 20000(1.015)^2 1.015M M$ where M is the monthly repayment.
- iii. Write an expression of A_n , the amount owed after n months.
- iv, Find the amount of the monthly repayment if she repays the loan in 5 years.

2

2

1

3

Use this information to find the value of:

Ouestion 3

diagram below.

1

i.
$$\int_{1}^{0} g(y) dy$$

ii.
$$\int_{0}^{2} g(y) dy$$

b. The diagram below shows the graph of the derivative of a certain function f(x).

a. The area between each loop of the curve x = g(y) and the y-axis is shown on the

Find the value(s) of x for which:

i. the function f(x) has stationary points.

ii. the function f(x) is decreasing.

iii. the function f(x) is concave down.

c. Find k such that
$$\int_{0}^{k} (5-2x)dx = 4.$$

d. The curve $y = \frac{1}{x}$ is rotated about the x-axis between x = 1 and x = 2. Use Simpson's rule with three function values to estimate the volume of the solid formed.

2

3

e. The graphs of $y = 16 - x^2$ and $y = 3x^2$ are drawn below.

i. Find the coordinates of point A.

ii. Find the area of the region contained by the two curves and the x-axis.

= 22+2+1 = 2X+1

Pete Simpson aestion 1 Question 1 II (+ 9-x2 CI (x) = x3-3x2-9x+C -1-3 19 19 (4x2)-2x - (9-x2)(2x) II (") = 6x -6 $\frac{dv}{dx} = -2x$ -2= (1) 3-3(1)2-9(1)1C 6226 V= 91X2 1-3-916=-2 X=1 dv = 2x = -18x-2x3-[18x-2x3 y=-2 $(x) = x^3 - 3x^2 + 9x + 4x + 19$ = - 18x - 2x3 - 18x 1 2x3 11 322-62-4=0 (+2, X) X2-2x-3=0 /I = 3//X11)=0 X=3 X==1 y=-18 ox y=14 25Am UEI 125- 4t JUI - X <u>du</u> = 1 =/2 - ("B) 70 V= III = minimum of X=3 ["(-1) = -6-6 di =1 I Z = V (25-4t)2+ (20-3t S"(-1)=-12 S/X) = 1625 - 200t 116t2 | 100- pot, 962 into :- maximum al X=+1 = \ 1025 -326t + 2st2. = \ 25t2-320t+1025' II (25t2-320t+1025) 11-112 (50f -320) = 50f-326 = 0 25t2-320t+1025 50f = 320 =0 50f =350 t= 6.4 hrs, or 384 minutes $Z = 1 \, km$ 44-2 = X-1 XALM 4 44= X11

