J.M.J.

MARCELLIN COLLEGE RANDWICK

YEAR 12 PRELIMINARY

ASSESSMENT TASK # 2

EXTENSION I MATHEMATICS

2007

Weighting: 40% of Preliminary Assessment Mark.					
STUDENT NAME:		MARK:	/ 29		
		PERCENTAGE:	0/0		
		RANK ON THIS TASK:	/2 4 3		
Time Allowed:	50 minutes				
Oirections:	Answer all questions on separate answer paper. Show all necessary working. Marks may not be awarded for careless or badly arranged work.				
Jutcomes examined:	-		•		
•	PE3 – Solves problems inv	olving polynomials and parametric representa	tions.		
•	PE4 – Uses the parametric geometric properties of par	representation together with differentiation to abolas.	identify		

QUESTION ONE (2 MARKS)

		i de la companya de	Marks	
P($(x)=x^3$	$+x^2-21x-45$		
(a	ı)	Show that $x + 3$ is a factor of $P(x)$	1 .	
(b))	Hence factorize P(x) in terms of its linear factors	1	
Q)UESTI	ON TWO (6 MARKS)		
C	onsider	the equation $x^3 + 2x - 6 = 0$		
(a) Sho	ow a root exists between $x = 1.4$ and $x = 1.5$	2	
(b	x =	ng the method of 'halving the interval', determine whether 1.4 or $x = 1.5$ is the best approximation to the root correct to ecimal place	1	
(c)	to d	Use Newton's Method once with an initial approximation of $x = 1.45$ to determine a better approximation to the root (correct to 2 decimal places)		
Q	UESTI	ON THREE (11 MARKS)		
P((2ap, ap	and Q(2aq, aq ²) are variable points on the parabola $x^2 = 4ay$		
	(a)	Show the equation of PQ is given by:	2	
	-	$y = \frac{(p+q)x}{2} - apq$		
; ;	(b)	If PQ is a focal chord, find the value of pq	1.	
: 1	. (c)	Show the equation of the normal to $x^2 = 4ay$ at P is given by:	3	
		$py - ap^3 = 2ap - x$		
-	· (d)	State the equation of the normal at Q	1	
	(e)	Find the locus of the point of intersection of the normals at P and Q	4	

QUESTION FOUR (4 MARKS)

The polynomial $2x^3 + ax^2 + bx + 6$ has x - 1 as a factor and leaves a remainder of -12 when divided by x + 2. Find the values of a and b.

QUESTION FIVE (6 MARKS)

The diagram above shows the graph of the parabola $x^2 = 4ay$. The normal to the parabola at the variable point $P(2at, at^2)$, t > 0, cuts the y axis at O. Point R lies on the parabola.

- Show that the equation of the normal to the parabola at P2 is $x + ty = at^3 + 2at$.
- Find the coordinates of R given that QR is parallel to the x axis 2 and $\angle PQR > 90^{\circ}$
- (iii) Let M be the midpoint of RQ. Find the Cartesian equation of the locus of M.

YEAR 12 PRELIMINARY TASK NO. 2

EXTENSION I MATHS

2007

Question One

Marks

a) P(-3) = 0 : by Factor Theorem, x+3 is a factor of P(x)

$$\begin{array}{c} x^{2} - 2x - 15 \\ x + 3 \quad) \quad x^{3} + x^{2} - 21x - 45 \\ x^{3} + 3x^{3} \\ -2x^{2} - 21x - 45 \\ -2x^{2} - 6x \\ -15x - 45 \\ -15x - 45 \\ \end{array}$$

$$P(x) = (x+3)(x-5)(x+3)$$

 $lo+ P(x) = x^3 + 2x - 6$ Question Two

a) P(1.4) = -0.456 and P(1.5) = 0.375Since P(x) is continuous, P(1-4) LO and P(1-5)>0, a root exists between x=1.4 and x=1.5. (1)

$$P(1.45) = -0.051375$$

P(1.45) = -0.051375: $\pi = 1.5$ is the best approx. (1 dp)

c)
$$a_1 = a_0 - \frac{P(a_0)}{P'(a_0)}$$
 $P(1.45) = -0.051375$
 $P'(x) = 3x^2 + 2$ $P'(x) = 3x^2 + 2$ $P'(x) = 8.3075$

$$a_1 = 1.46(2dp)$$

Question Three

(a) m of
$$PQ = \frac{p+q}{2}$$
 (1)
Eqn of $PQ = y-ap^2 = p+q(x-2ap)$

$$2y - 2ap^2 = px+qx - 2ap^2 - 2apq$$

$$2y = (p+q)x - 2apq$$

$$y = (p+q)x - apq$$

$$\therefore a = -apq$$

$$\Rightarrow pq = -1 \qquad (1)$$

$$(c) x^2 = 4ay$$

$$\therefore y = x^2$$

$$4a$$

$$y' = 2x / 4a$$

$$y - ap^2 = -\frac{1}{p}(x - 2ap)$$

$$-y'(2ap) = p$$
 (1)

$$= py - ap^3 = -x + 2ap$$

ie py
$$-ap^3 = 2ap - x$$
 as regid

(d)
$$qy - aq^3 = 2aq - x$$
 (1)

Question Three continued . - -

(e)
$$Py - ap^3 = 2ap - x$$
 (1)
 $qy - aq^3 = 2aq - x$ (2)

(1) - (2):
$$py - qy - ap^3 + aq^3 = 2ap - 2aq$$

$$py - qy = ap^3 - aq^3 + 2ap - 2aq$$

$$-(p-q)y = a(p-q)(p^2 + pq + q^2) + 2a(p-q)$$

$$-y = a(p^2 + pq + q^2) + 2a$$

$$ap(p^2+pq+q^2) + 2ap - ap^3 = 2ap - x$$

$$= ap^3 + ap^2q + apq^2 + 2ap - ap^3 = 2ap - 24$$

$$x = -ap^2q - apq^2$$

$$= x = -apq(p+q)$$

- Point of Intersection of Normals has coords:

$$\left[-apq(p+q), a(p^2+pq+q^2+2)\right]$$

Now
$$x = -apq(p+q)$$
 and $y = a(p^2 + pq + q^2 + 2)$

$$\frac{y}{a} = \frac{x^2}{a^2} + 3$$

:
$$ay = x^2 + 3a^2$$

$$\therefore x^2 = ay - 3a^2$$

Question Four

(at
$$f(x) = 2x^3 + ax^2 + bx + b$$

Now $f(i) = 0$ is $a + b + 8 = 0$
 $a + b = -8$ (i) 0

and
$$P(-2) = -12$$
 ie: $4a - 2b - 10 = -12$
 $2a - b = -1$ (2)

Solving simultaneously:

$$\frac{(1)+(2):}{2}:3a=-9$$

$$2a=-3$$

$$3b=-5$$

$$5b=-5$$

Question Five

(i)
$$y = \frac{x^{2}}{4a}$$
 $y'' = \frac{x^{2}}{2a}$
 $y'' = \frac{x^{2}}{2a}$

(ii) Let
$$x = 0$$
 : $ty = at^3 + 2at$
: $y = at^2 + 2a$

when
$$y = at^2 + 2a$$
 $\pi^2 = 4g(at^2 + 2a)$
 $\pi = \pm 2q/mt^2 + 2m$ From diagram, & has coords $(-2q/mt^2 + 2m)$, $at^2 + 2a$

(ii) continued ...

we also know the x coord of R is negative as LPQR > 90° and hence R next be on negative side of x axis.

(iii) Midpoint RQ =
$$\left(\frac{-20\sqrt{at^2+2m}}{2}, \frac{2(at^2+2a)}{2}\right)$$

= $\left(-\frac{\sqrt{at^2+2m}}{2}, \frac{at^2+2a}{2}\right)$

Now
$$x = -\sqrt{mt^2 + 2n}$$
 and $y = at^2 + 2a$

$$x^2 = at^2 + 2a^2$$

$$y = a(\frac{x^2 - 2a}{a^2}) + 2a$$

$$y = a(\frac{x^2 - 2a}{a}) + 2a$$

$$y = a(\frac{x^2 - 2a}{a}) + 2a$$

$$y = x^2$$

$$y = x^2$$