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Directions:
o Answer all questions on separate lined paper.
e Show all necessary working. \
e Marks may not be awarded for careless or badly arranged work.

Outcomes examined:

PE2 — Uses multi-step deductive reasoning in a variety of contexts.

PE3 — Solves problems involving polynomials ard parametric representations.

PE4 — Uses the parametric representatlon together with differentiation to identify geometric
properties of parabolas.

PE6 —Makes comprehensive use of Mathematical language, d1agra.ms and notation for
communicating in a wide variety of situafions;

HE1 — Appreciates mterrelaﬂonshlps between ideas drawn from different areas of Mathematics.
HE2 — Uses inductive reasoning in the construction of proofs.

HE3 — Uses a variety of strategies to investigate Mathematical models of situations invelving
projectile motion, simple harmonic motion, or exponential growth and decay.

TES — Applies the chain rule to problems including those involving velocity and acceleration as

functions of displacement:

QUESTION ONE (2 MARKS)

Consider the polynomial P(x) =2x> + 3x* — kx + 12

(a) Determine the value of k if x + 4 is a factor of P(x)

(b) Hence express P(x) as a product of its linear factors

QUESTION TWO (3 MARKS)

A plane flying horizontally at 500 km/h releases a projectile designed to hit a target
on the ground. The plane is flying at a constant height of 2 km.

You may assume the displacement-time equations of motion:

— 2
x=Vtcosf and y=—5£+VtSin9+2000

and that g =10ms™

Calculate the horizontal distance from the target that the plane must release the
projectile to successfully hit the target.
QUESTION THREE (4 MARKS)

Water is running out of a conical funnel at the rate of S5em®/s. The base radius of the
funnel is 10cm and the height is 20cm.

Let h cm be the height and r cm be the base radius of the remaining water.

NOT TO SCALE

@ Show that r =%h , giving reason(s).

(b) Show that the volume (V) of water in the cone can be expressed as:

y=Law
12

(c) How fast is the water level dropping when the water is 10cm deep?
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QUESTION FOUR (4 MARKS)
Marks

The velocity of a particle in terms of its displacement is given by v =v3x+1 where

x is the displacement in metres and v is the velocity in metres per second. The

particle is initially at the origin.

(a) Show that the acceleration of the particle is a constant. 1

(b) Find its displacement after 5 seconds

QUESTION FIVE (4 MARKS)
. .
@ Show that +/3 cos 2¢ —sin 2¢ =2 cos(2t + %)

(b) A particle moves in a straight line and its displacement x metres at any time ¢
seconds is given by:

x=5+ﬁcoszz—sin21

i)  Prove that the particle’s motion is Simple Harmonic 2

ii) Between what two points is the particle oscillating? 1.7,

QUESTION SIX (3 MARKS) [

The temperature of a particular body satisfies an equation of the form
T= B+ A, where T'is the temperature of the drink in degrees Celsius, ¢ is the time
in minutes, 4 and k are constants and B is the temperature of the surroundings in

degrees Celsius.

The body cools from 90°C to 80°C in 2 minutes in a surrounding of temperature
30°C.

(2) Find the values of 4 and &

(b) Find the temperature of the body after a further 5 minutes have passed 1
(Answer correct to the nearest degree)

QUESTION SEVEN (6 MM)

A particle is undergoing Simple Harmonic Motion, oscillating between the points P
atx =3 and Q at x = -5 on the x axis. It takes % seconds for the particle to travel

from P to Q.
(a) Write down its acceleration in terms of x
(b) Find its maximum acceleration

(¢) Find its maximum speed

QUESTION EIGHT (4 MARKS) 0

Consider a sector of a circle of radius 1, the angle at the centre being ©

@ Show that when sin 6 = g the chord AB bisects the sector

(b) Investigate whether 1.8 or 2.0 would be a more satisfactory first

approximation for the solution of the equation sin 0 - 52)- =0.
(c) Use Newton’s method once to obtain a better approximation of the root. (Use

your answer from (b) as an initial approximation). Answer correct to 2 '
decimal places

QUESTION NINE (4 MARKS)

P(2ap, ap”) is any point on the parabola %> = 4qy. The line k is parallel to the tangent
at P and passes through the focus, S, of the parabola.

(a) Find the equation of the line &

(b) The line k intersects the x-axis at the point Q. Find the coordinates of the
midpoint, M, of the interval QS.

(c) Whatis the equation of the locus of M?
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QUESTION TEN (5 MARKS) /

(a) Prove that:

; ,
) —2cos(x+%) =sinx—\/§cosx

ii) 2 sin? x —3cos® x
tan‘ x-3=———7——
cos” %
(b) Hence evaluate

. tan’x-3tanx
lim

2z T
3 Ccos| x+—
6

QUESTION ELEVEN (7 MARKS) '

A ball is fired from level ground at 20m/s, aiming to hit as high as it can up a wall
20m away (In this problem, take g = 10m/s?)

(a) Prove that, for any point P(x,y) on the ball’s path
x=20tcos & and y=20¢sind - 5F

(b) Prove that the height h on the wall obtained by firing the ball at an angle @is
given by

h=20tan6 -5sec’0

(c) Prove that

gg =10sec? (2 —tan 8)

(d) Find the maximum height the ball can reach up the wall
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Que stion 10 610 continved.
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Guestion Eleven @ continued
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