MARCELLIN COLLEGE RANDWICK

YEAR 12 HSC ASSESSMENT TASK # 1

EXTENSION I MATHEMATICS

2007

Weighting: 30% of H.S.C. Assessment Mark.

STUDENT NAME:	MARK:	/46
	PERCENTAGE:	%
	RANK ON THIS TASK	. /23
		,

Time Allowed:

 $1\frac{1}{2}$ hours

Directions:

- Answer all questions on separate lined paper.
- Show all necessary working.
- Marks may not be awarded for careless or badly arranged work.

Outcomes examined:

- PE2 Uses multi-step deductive reasoning in a variety of contexts.
- PE3 Solves problems involving polynomials and parametric representations.
- PE4 Uses the parametric representation together with differentiation to identify geometric properties of parabolas.
- **PE6** Makes comprehensive use of Mathematical language, diagrams and notation for communicating in a wide variety of situations
- HE1 Appreciates interrelationships between ideas drawn from different areas of Mathematics.
- HE2 Uses inductive reasoning in the construction of proofs.
- HE3 Uses a variety of strategies to investigate Mathematical models of situations involving projectile motion, simple harmonic motion, or exponential growth and decay.
- **HE5** Applies the chain rule to problems including those involving velocity and acceleration as functions of displacement.

QUESTION ONE (2 MARKS)

Consider the polynomial $P(x) = 2x^3 + 3x^2 - kx + 12$

- (a) Determine the value of k if x + 4 is a factor of P(x)
- (b) Hence express P(x) as a product of its linear factors

QUESTION TWO (3 MARKS)

A plane flying horizontally at 500 km/h releases a projectile designed to hit a target on the ground. The plane is flying at a constant height of 2 km.

You may assume the displacement-time equations of motion:

$$x = Vt \cos\theta$$
 and $y = \frac{-gt^2}{2} + Vt \sin\theta + 2000$

and that $g = 10ms^{-2}$

Calculate the horizontal distance from the target that the plane must release the projectile to successfully hit the target.

QUESTION THREE (4 MARKS)

Water is running out of a conical funnel at the rate of 5cm³/s. The base radius of the funnel is 10cm and the height is 20cm.

Let h cm be the height and r cm be the base radius of the remaining water.

NOT TO SCALE

a) Show that $r = \frac{1}{2}h$, giving reason(s).

1 ,

Marks

3

(b) Show that the volume (V) of water in the cone can be expressed as:

1

$$V = \frac{1}{12}\pi h^3$$

(c) How fast is the water level dropping when the water is 10cm deep?

2

1

QUESTION FOUR (4 MARKS)

V		Marks
x i	where velocity of a particle in terms of its displacement is given by $v = \sqrt{3x+1}$ where is the displacement in metres and v is the velocity in metres per second. The rticle is initially at the origin.	
(a)	Show that the acceleration of the particle is a constant.	1
(b)	Find its displacement after 5 seconds	3
Qτ	JESTION FIVE (4 MARKS)	
(a)	Show that $\sqrt{3}\cos 2t - \sin 2t = 2\cos(2t + \frac{\pi}{6})$	1
(b)	A particle moves in a straight line and its displacement x metres at any time t seconds is given by:	
	$x = 5 + \sqrt{3}\cos 2t - \sin 2t$	
	i) Prove that the particle's motion is Simple Harmonic	2
	ii) Between what two points is the particle oscillating?	1 - ',
•	G-10 (3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
Qυ	ESTION SIX (3 MARKS)	
T = in m	temperature of a particular body satisfies an equation of the form $B + A_e^{-kt}$ where T is the temperature of the drink in degrees Celsius, t is the time ninutes, A and k are constants and B is the temperature of the surroundings in trees Celsius.	
The	body cools from 90°C to 80°C in 2 minutes in a surrounding of temperature C.	
(a)	Find the values of A and k	2 ;
(b)	Find the temperature of the body after a further 5 minutes have passed (Answer correct to the nearest degree)	1

QUESTION SEVEN (6 MARKS)			
A particle is undergoing Simple Harmonic Motion, oscillating between the points P			
at x = 3 and Q at x = -5 on the x axis. It takes $\frac{\pi}{2}$ seconds for the particle to travel			
from P to Q.			
(a) Write down its acceleration in terms of x	2		
(b) Find its maximum acceleration	1,7		
(c) Find its maximum speed	3		
QUESTION EIGHT (4 MARKS)			

Consider a sector of a circle of radius r, the angle at the centre being θ

- (a) Show that when $\sin \theta = \frac{\theta}{2}$ the chord AB bisects the sector
- (b) Investigate whether 1.8 or 2.0 would be a more satisfactory first approximation for the solution of the equation $\sin \theta \frac{\theta}{2} = 0$.
- (c) Use Newton's method once to obtain a better approximation of the root. (Use your answer from (b) as an initial approximation). Answer correct to 2 decimal places

QUESTION NINE (4 MARKS)

 $P(2ap, ap^2)$ is any point on the parabola $x^2 = 4ay$. The line k is parallel to the tangent at P and passes through the focus, S, of the parabola.

- (a) Find the equation of the line k
- (b) The line k intersects the x-axis at the point Q. Find the coordinates of the midpoint, M, of the interval QS.
- (c) What is the equation of the locus of M?

QUESTION TEN (5 MARKS)

.

(a) Prove that:

i)
$$-2\cos\left(x+\frac{\pi}{6}\right) = \sin x - \sqrt{3}\cos x$$

ii)
$$\tan^2 x - 3 = \frac{\sin^2 x - 3\cos^2 x}{\cos^2 x}$$

(b) Hence evaluate

$$\lim_{x \to \frac{\pi}{3}} \frac{\tan^3 x - 3\tan x}{\cos\left(x + \frac{\pi}{6}\right)}$$

QUESTION ELEVEN (7 MARKS)

A ball is fired from level ground at 20m/s, aiming to hit as high as it can up a wall 20m away (In this problem, take $g = 10m/s^2$)

(a) Prove that, for any point P(x,y) on the ball's path

$$x = 20 t \cos \theta$$
 and $y = 20t \sin \theta - 5t^2$

(b) Prove that the height h on the wall obtained by firing the ball at an angle θ is given by

$$h = 20 \tan \theta - 5 \sec^2 \theta$$

(c) Prove that

$$\frac{dh}{d\theta} = 10\sec^2\theta(2 - \tan\theta)$$

(d) Find the maximum height the ball can reach up the wall

Marks

1 '

1

3

2 ₺

1

1

3

2007 HALF - YEARLY EXAM

ASSESSMENT TASK I

EXTENSION | MATHS

Question One

a) If x+4 is a factor of P(x) then P(-4)=0

b)
$$2x^{2} - 5x + 3$$

$$x + 4) 2x^{3} + 3x^{2} - 17x + 12$$

$$2x^{3} + 8x^{2}$$

$$-5x^{2} - 17x + 12$$

$$-5x^{2} - 20x$$

$$3x + 12$$

$$3x + 12$$

$$P(x) = (x+4)(2x^2-5x+3)$$

$$= (x+4)(2x+1)(x-3)$$

$$= (x+4)(2x+1)(x-3)$$

$$= (x+4)(2x+1)(x-3)$$

Question Two

$$y = -\frac{10t^2}{2} + \frac{1250t \sin 0}{9} + 2000$$

Now, projectile hits the ground when y=0

when
$$t = 20$$
 $x = \frac{1250}{9} (20) \cos 0^{\circ}$

$$\therefore x = \frac{25000}{a} \text{ m} \qquad \leftarrow 1 \text{ mark}$$

Question Three

a) Using similar
$$\Delta ls$$
:
$$\frac{1}{10} = \frac{1}{20}$$

$$\frac{1}{10} = \frac{1}{20}$$

b)
$$V = \frac{1}{3}\pi r^2 h$$

$$V = \frac{1}{3}\pi \left(\frac{h}{2}\right)^2 h$$

$$V = \frac{\pi h^3}{12}$$

c)
$$\frac{dh}{dt} = \frac{dh}{dv} \cdot \frac{dv}{dt}$$
 $\frac{dv}{dh} = \frac{\pi h^2}{4}$

$$= \frac{4}{\pi h^2} \cdot (-5)$$

$$= -20$$

$$= -20$$

$$= -20$$

. The water level is dropping at 1/51 cms-1

Question Four

a)
$$V = \sqrt{3x+1}$$

$$\frac{v^2}{2} = \frac{3x}{2} + \frac{1}{2}$$

$$\frac{V^{2}}{2} = \frac{3x}{2} + \frac{1}{2}$$

$$\frac{d}{dx}(\frac{V^{2}}{2}) = \frac{3}{2}$$

$$\tilde{x} = \frac{3}{2}$$

: Acc. is constant

b)
$$\frac{dx}{dt} = \sqrt{3x+1}$$

$$-\frac{dt}{dx} = \frac{1}{\sqrt{3x+1}}$$

$$: t = 2(3x+1)^{\frac{1}{2}} + C$$

when
$$t = 0$$
, $x = 0$ = $C = -\frac{2}{3}$

$$: t = \frac{2(3x+1)^{\frac{1}{2}}}{3} = \frac{2}{3} \leftarrow l mark$$

when
$$t=5$$
 $5=\frac{2\sqrt{3x+1}}{3}-\frac{2}{3}$

$$15 = 2\sqrt{3x+1} - 2$$

$$=\sqrt{3x+1} = \frac{1}{2}$$

Question Five

- a) 2 cos (2t + 1) = $2 \cos 2t \cos \frac{\pi}{6} - 2 \sin 2t \sin \frac{\pi}{6}$ = $2(\cos 2t)(\frac{\sqrt{3}}{2}) - 2(\sin 2t)\frac{1}{2}$
 - = 13 cos 2t sin 2t
- b) i) V = 2/3 sin 2t 2 cos 2t : x = - 4/3 cos 2t + 4 sin2t + 1 mark $= -4(\sqrt{3}\cos 2t - \sin 2t)$

But J3 cos 2t - sin 2t = x-5

i) c.o.m = 5 and Amp = 42

: Particle is oscillating between) I mark

$$x = 1$$
 and $x = 9$

Question Six

a)
$$T = B + Ae^{-bt}$$

when t = 0, T = 90 and B = 30

$$A = 60$$

when t= 2, T=80

$$...$$
 80 = 30 + 60e^{-2k}

$$= -2k = \frac{5}{6}$$

$$= -2k = ln(5/6)$$

$$k = \ln \left(\frac{5}{6}\right) \quad \text{or} \quad \frac{1}{2} \ln \left(\frac{6}{5}\right) \quad \text{mark}$$

when t=7

$$T = 30 + 60e^{-7k}$$

Question Seven

a)
$$\ddot{x} = -4(x+1)$$
 $P = \pi$ secs
$$\frac{2\pi}{n} = \pi$$

$$1 \text{ mark } 1 \text{ mark} \qquad \therefore n = 2$$

b) Max. acc. at the extremities ie when x = - 5 (or 3)

$$\vec{x} = -4(-4)$$

c)
$$\bar{\chi} = -4\chi - 4$$

$$\frac{d}{dx}\left(\frac{1}{2}v^2\right) = -4x - 4$$

Max. speed at C.O.M. ie. when x = -1

Question Eight

- a) Area of sector = $\frac{1}{2}r^2\theta$: $\frac{1}{2}$ Area of sector = $\frac{r^2\theta}{4}$ and Area of triangle = $\frac{1}{2}r^2\sin\theta$ = $\frac{1}{2}r^2\frac{\theta}{2}$
- : Area of $\Delta = \frac{1}{2}$ Area of sector if $\sin \theta = \frac{\theta}{2}$ ie. AB bisects the sector if $\sin \theta = \frac{\theta}{2}$ $|\cos \theta| = \frac{1}{2}$
- Now $P(1.8) = 6 \cdot 0 + \frac{\theta}{2}$ Now P(1.8) = 0.07384763and P(2) = -0.090702573 $\theta = 1.8$ is the better approx.

1 mark

)
$$a_1 = a_0 - \frac{\rho(a_0)}{\rho'(a_0)}$$

$$l'(\theta) = \cos \theta - \frac{1}{2}$$

$$l'(1.8) = \cos 1.8 - \frac{1}{2}$$

$$= -0.727202094$$

: a, = 1.8 + 0.07 384763 0.727202094

Question Nine

Eqn of Tat P:
$$y-a=p(x-0)$$

$$px-y+a=0 \leftarrow lmark$$

b) let
$$y=0$$
: $x=-\frac{a}{p}$
: Coords of Q are $\left(-\frac{a}{p},0\right)$ — I mark

Mpt of QS = $\left(-\frac{a}{p},\frac{a}{2}\right)$ — I mark

c) $x=-\frac{a}{2p}$ and $y=\frac{a}{2}$

Question 10

a) i) LHS =
$$-2\cos\left(x + \frac{\pi}{6}\right)$$

= $-2\left[\cos x \cos \frac{\pi}{6} - \sin x \sin \frac{\pi}{6}\right]$
= $-2\left[\frac{\sqrt{3}\cos x}{2} - \frac{\sin x}{2}\right]$ | mark
= $-\sqrt{3}\cos x + \sin x$
= $\sin x - \sqrt{3}\cos x$

ii) LHS =
$$tan^2x - 3$$

$$= \frac{sin^2x}{cos^2x} - 3$$

$$= \frac{sin^2x - 3cos^2x}{cos^2x}$$

$$= 2HS$$

$$= \rho HS$$

$$\Rightarrow \lim_{x \to \frac{\pi}{3}} \frac{\tan^3 x - 3\tan x}{\cos \left(x + \frac{\pi}{6}\right)} = \lim_{x \to \frac{\pi}{3}} \frac{\tan x \left(\tan^2 x - 3\right)}{-\frac{1}{2} \left[-2\cos \left(x + \frac{\pi}{6}\right)\right]}$$

$$= \lim_{x \to \frac{\pi}{3}} \frac{-2\tan x (\tan^2 x - 3)}{\sin x - \sqrt{3}\cos x}$$

$$= \lim_{x \to \frac{\pi}{3}} \frac{-2\sin x}{\cos x} \frac{\sin^2 x - 3\cos^2 x}{\cos^2 x}$$

$$= \lim_{x \to \frac{\pi}{3}} \frac{-\cos x}{\cos x}$$

continued next page ...

a10 continued.

$$= \lim_{\chi \to \frac{\pi}{3}} \frac{-2\sin \chi}{\cos^3 \chi} \left(\sin \chi - \sqrt{3}\cos \chi\right) \left(\sin \chi + \sqrt{3}\cos \chi\right)$$

$$= \lim_{\chi \to \frac{\pi}{3}} \frac{-2\sin \chi}{\cos^3 \chi} \left(\sin \chi + \sqrt{3}\cos \chi\right)$$

$$= \frac{-2\sin \frac{\pi}{3}}{\cos^3 \frac{\pi}{3}} \left(\sin \frac{\pi}{3} + \sqrt{3}\cos \frac{\pi}{3}\right)$$

$$= \frac{-2\sin \frac{\pi}{3}}{\cos^3 \frac{\pi}{3}} \left(\sin \frac{\pi}{3} + \sqrt{3}\cos \frac{\pi}{3}\right)$$

$$= \frac{-2\left(\frac{\sqrt{3}}{2}\right)}{\frac{1}{8}} \left(\sqrt{\frac{3}{2}} + \sqrt{\frac{3}{2}}\right)$$

$$= -24$$

I mark for correct answer

Question Eleven

When
$$t=0$$
, $x=V\cos\theta$

subst
$$t = \cos\theta$$
 into $y = -5t^2 + 20t \sin\theta$

 $\ddot{y} = -9$

= y = -9t + R

: b = Vsin0

when t=0, y = Vsin0

 $\therefore \dot{y} = -gt + Vsin\theta$

Now $y = -gt^2 + Vt \sin\theta + M$

when t=0, y=0 = M=0

since g = 10 and V = 20 $y = -5t^2 + 20t \sinh\theta$

 $y = -9t^2 + 4t \sin \theta$

$$\therefore g = -\frac{5}{\cos^2\theta} + \frac{20\sin\theta}{\cos\theta}$$

1 mark

Oll continued

c)
$$h = 20 \tan \theta - 5(\cos \theta)^{-2}$$

=
$$20 \sec^2\theta - 10 \tan\theta \sec^2\theta$$
 | mark
= $10 \sec^2\theta (2 - \tan\theta)$

$$10 \sec^2\theta (2 - \tan\theta) = 0$$

$$\theta = ton^{-1}(2)$$

в	ŧ	2	3
dh de	1	_	•
	-	MAX	

← I mark

$$h = 20(2) - 5(1+4) \leftarrow \left(\frac{\sin \alpha}{\sec^2 \theta} = 1 + \tan^2 \theta\right)$$

$$= 40 - 25$$

: Max. height the ball can reach up the wall is 15 m