GRAPHS – WORKSHEET #5

Course/Level

NSW Secondary High School Year 12 HSC Mathematics Extension 2.

TOPIC

Graphs

1.

For the function y = f(x) sketched above, draw separate sketches for the following.

(i)
$$y = f(x) - \frac{1}{2}$$

$$(v) y = \frac{1}{f(x)}$$

(ii)
$$y = f\left(x - \frac{1}{2}\right)$$

(vi)
$$y = f(|x|)$$

(iii)
$$y = f(-x)$$

(vii)
$$y^2 = f(x)$$

(iv)
$$y = (f(x))^2$$

(viii)
$$y = 2^{-f(x)}$$

- 2. Use the graphs of y = |x+2| and y = |x-1| to sketch the graph of y = |x+2| + |x-1|. Hence, or otherwise, solve the inequality |x+2| + |x-1| > 4.
- 3. Draw neat separate sketches of the following sketches, without using calculus. Include features such as any x- and y- intercepts and the equations of any asymptotes.

(i)
$$y = x^3$$

(ii)
$$y = \frac{1}{r^3}$$

(ii)
$$y = \frac{1}{x^3}$$
 (iii) $y = \frac{x^3 - 1}{x^3}$

(iv)
$$y = \frac{x^3}{x^3 - 1}$$

(v)
$$y = x^3 - \frac{1}{x^3}$$

Given that $f(x) = x^2(x^2-1)(x+1)$, sketch the following functions. (It is not necessary to 4. locate turning points).

(i)
$$y = f(x)$$

(ii)
$$y = f(|x|)$$

(i)
$$y = f(x)$$
 (ii) $y = f(|x|)$ (iii) $y = |f(x)|$ (iv) $y^2 = f(x)$ (v) $y \cdot f(x) = 1$

(iv)
$$y^2 = f(x)$$

$$(v) \quad y \cdot f(x) = 1$$

- 5. Suppose the curve y = f(x) has a stationary point at x = a. Show that $g(x) = \frac{1}{f(x)}$ also has a stationary point at x = a provided $f(a) \neq 0$.
- 6. Let $f(x) = x 2 + \frac{3}{x+2}$.
 - (i) Find the points at which f(x) = 0.
 - (ii) Find the turning points of f(x), if any, and identify them.
 - (iii) Find the asymptotes.
 - (iv) Sketch the curve, marking all the features you have found in parts (i) (iii) above.
- 7. Draw separate sketches of $y = \frac{x(x-1)}{x-2}$ and $y = \sqrt{\frac{x(x-1)}{x-2}}$. Include any x- or y-intercepts and asymptotes. (It is not necessary to find the co-ordinates of any stationary points.)
- 8. Let $\min(a,b)$ denote the minimum of the numbers a and b. Sketch the function $y = \min(2,x)$ over the interval $0 \le x \le 3$ and evaluate $\int_0^3 \min(2,x) dx$.
- 9. If f(x) = (x-2)(x+1), sketch separate graphs of the following:
 - (i) y = f(x) (ii) $y = \frac{1}{|f(x)|}$

In each sketch, include the co-ordinates of any stationary or critical points.

- 10. If $f(x) = \frac{x+1}{x-2}$, sketch the following functions.
 - (i) y = f(x) (ii) $y = \ln(f(x))$ (iii) $y = e^{f(x)}$ (iv) $y = \sin^{-1}(f(x))$
- 11. Sketch the following:
 - (i) $y = e^{-1/x}$ (ii) $y = e^{-\sin x}$ (iii) $y = \cos(x^2)$ (iv) $y = \cos(\sin^{-1} x)$
- 12. Without calculus, sketch the curve which represents $y = \frac{1}{\sqrt{(x+1)(x+3)}}$.