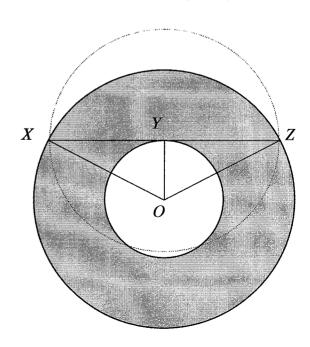
PREPARATORY PRELIMINARY MATHEMATICS WORKSHEET #1


COURSE/LEVEL

NSW Secondary High School Year 11 Preliminary Mathematics.

- 1. Give an equation for the straight line which is parallel to the y-axis and passes through the point (2, -3).
- 2. Calculate the volume of a cylinder of base radius 5 metres and height 3 metres. (Leave your answer in exact form.)
- 3. Make y the subject of the formula: $\frac{1-y}{y} = x$.
- 4. Simplify: $\frac{(1.3 \times 10^{-3})^2}{6.5 \times 10^{-7}}$

5. Simplify $(81)^{-\frac{3}{4}}$

- $6. Simplify \sqrt{\frac{3x^{-3}}{y} \div \frac{27x}{4y^3}}$
- 7. Find the x-intercepts of the graph with equation $y = x^2 + 7x 8$.
- 8. If $\tan \theta = 0.9916$, find angle θ correct to the nearest minute.
- **9**. Expand and simplify: $(2\sqrt{2} \sqrt{5})^2$.
- 10. Solve for y: $60 (2y + 1)^2 = 24$.
- 11. The shaded region is an annulus, formed by a small circle of radius k and a large circle of radius 2k. The circles forming the annulus both have the same centre O.
 - (a) Find the area of the annulus in terms of k.
 - (b) X and Z are points which lie on the circumference of the larger circle. OY is a radius of the smaller circle and point Y is the midpoint of XZ. Another circle, shown as a dotted line, has XZ as its diameter. Show that this circle has the same area as the annulus.

Prepatory Preliminary Mathematics Exercit y= x2+7x-8 Let y=0

Worksheet #1 Angelina John widgeya.

2.
$$V = \pi r^2 h$$

= $(75\pi) m^3 /$

3.
$$\frac{1-y}{y} = x$$

$$\therefore y = \frac{1}{1+x} /$$

$$\int \frac{\frac{1}{3x^3}}{y} \times \frac{4y^3}{27x}$$

$$= \sqrt{\frac{1}{3x^3y}} \times \frac{4y^{3}}{27x}$$

$$= \sqrt{\frac{4y^2}{8|x^4|}}$$

$$= \frac{2y}{9x^2}$$

$$0 = x^{2} + 3x - 8$$

$$= (x + 8)(x - 1)$$

10.
$$60 - (2y+1)^2 = 24$$

$$60 - (4y^2 + 4y + 1) = 24$$

$$36 - 4y^2 - 4y - 1 = 0$$

$$2y = -1 \pm 6$$

$$-4y^2 - 4y + 35 = 0 - y = \frac{5}{2} + cr - \frac{7}{2}$$

Sum: -4
$$-4y^2 - 14y + 10y + 35 = 0$$

Product: -140 $-2y (2y + 7) + 5 (2y + 7) = 0$
 $\therefore (-2y + 5)(2y + 7) = 0$
 $\therefore (-2y + 5)(2y + 7) = 0$

$$y = \frac{5}{2}, -\frac{7}{2}$$

11. (a)
$$A_1 = \pi r^2$$
 (big circle) \checkmark

$$= 4k^2 \pi$$

$$A_1 = k^2 \pi$$
 (smaller circle) \checkmark

:. A of annulus =
$$A_1 - A_{11}$$

= $4k^2\pi - k^2\pi$
= $(3k^2\pi)$ units ²

(b)
$$0x^{2} = 0Y^{2} + XY^{2}$$

 $\therefore 4k^{2} - k^{2} = XY^{2}$
 $3k^{2} = XY^{2}$
 $\therefore XY = k\sqrt{3}$

: radius of 2nd circle is
$$k\sqrt{3}$$

: $A = \pi (k\sqrt{3})^2$

$$= (3k^2\pi) units^2 \sqrt{2}$$