PREPARATORY PRELIMINARY MATHEMATICS WORKSHEET #2

COURSE/LEVEL

NSW Secondary High School Year 11 Preliminary Mathematics.

- 1. Mark the region corresponding to the inequality, 2x y < 1, on the grid.
- 2. Find the gradient of the line which passes through the points (0, -3) and (-1, 1) on the number plane.
- 3. Give an expression for x in terms of k, if $(x-k)^2 = 1$.

4. ACD is a triangle and point B lies on side AC such that AB = BD = BC = CD

Find angle $BAD(x^{\circ})$:

- 5. Solve for x and y where: 4x y = 1 and 3y 6x = -1.
- 6. The diagram shows a rectangle 8 cm long and 6 cm wide. It contains 12 shaded circles packed closely together in rows. Each circle has a radius of 1 cm.

What fraction of the area of the rectangle lies outside the shaded circles? Give your answer in exact form.

Good wer. Preparatory Prelimnary Haths-Workshoet #2

$$2x-y<1
2x-y=1
y=-2x+1
2x-y=1
y=-2x+1$$

Test point (0,0) into 2x-y < 1

0 < 1 (True)

)
$$M = \frac{y_2 - y_1}{x_2 - x_1}$$

= $\frac{-3 - 1}{0 + 1}$
= $\frac{-4}{1}$

$$(x-k)^{2} = 1$$

$$(x^{2}-2k+k^{2}k=1)$$

$$x^{2} = 2k-k^{2}+1$$

$$\therefore x_{1} = 2k-k^{2}+1$$

1)
$$\angle CBD = 60^{\circ}$$
 (L of equil. \triangle)
1. $\angle DBA = 120^{\circ}$ (L sum of st. line = 180°)
1. $\chi = 180 - 120$
= 30°

3y-6x=-1-0
0x3 12x-3y=3-3
0+3 6x=42
Sub. x=0 into 0

$$\frac{x}{3}$$
-y=1 \Rightarrow $y=\frac{4}{3}$ -1= $\frac{1}{3}$

(6) shaded area =
$$12\pi \checkmark$$

non-shaded area = $48-12\pi \checkmark$

if fraction of area of rectae outside the shaded circles is $48-12\pi$
 48

= $12(4-\pi)\checkmark$
 48