Angle between two lines

Solutions

Main Menu

- 39 What is the acute angle to the nearest degree between the lines y=2x-3 and 3x+5y-1=0?
 - (A) 32°
 - (B) 50°
 - (C) 82°
 - (D) 86°
- **40** What is the acute angle to the nearest degree between the lines y=1-3x and 4x-6y-5=0?
 - (A) 15°
 - (B) 38°
 - (C) 52°
 - (D) 75°
- 41 What is the acute angle to the nearest degree between the lines y = 2x 1 and x 3y + 6 = 0?
 - (A) 45°
 - (B) 54°
 - (C) 79°
 - (D) 82°
- 42 What is the acute angle to the nearest degree between the lines y=7-4x and 2x-3y-6=0?
 - (A) 26°
 - (B) 48°
 - (C) 71°
 - (D) 75°
- 43 What is the acute angle between the lines 2x y 7 = 0 and 3x 5y 2 = 0?
 - (A) 4°24`
 - (B) 32° 28'
 - (C) 57°32'
 - (D) 85°36'

- 44 What is the acute angle between the lines 3x+4y=8 and 2x+3y=5?
 - (A) 3°11'
 - (B) 9°28'
 - (C) 70°36'
 - (D) 86°49'
- 45 What is the acute angle between the lines $y \sqrt{3x} 6 = 0$ and $\sqrt{3}y x + 2 = 0$?
 - (A) 30°
 - (B) 45°°
 - (C) 60°
 - (D) 90°
- 46 P(-2,1) and Q(4,5) are two vertices of an acute angled triangle PQR. The side QR has the equation x+2y-10=0. What is the size of the angle between the sides PQ and QR correct to the nearest degree?
 - (A) 37°
 - (B) 38°
 - (C) 52°
 - (D) 53°
- 47 What is the acute angle to the nearest degree that the line 2x-3y+5=0 makes with the y-axis?
 - (A) 27°
 - (B) 34°
 - (C) 56°
 - (D) 63°
- 48 The curves $y = x^2$ and $y = (x-2)^2$ meet at the point (1,1). What is the acute angle between the tangents to curves at this point?
 - (A) 0°
 - (B) 37°
 - (C) 53°
 - (D) 65°

- 49 The curves $y = 3x^2$ and $y = 4x x^2$ meet at the point (0,0). What is the acute angle between the tangents to curves at this point?
 - (A) 0°
 - (B) 38°40'
 - (C) 68°41'
 - (D) 75°58'
- 50 The curves $y = \sqrt{x}$ and $y = \frac{x^2}{4} 2$ meet at the point (4,2). What is the acute angle between the tangents to curves at this point?
 - (A) 39°
 - (B) 41°
 - (C) 49°
 - (D) 51°

Ang	Angle between two lines <u>N</u>	
	Solution	Criteria
39	For $y = 2x - 3$ then $m_1 = 2$	
	For $3x + 5y - 1 = 0$ then $m_2 = -\frac{3}{5}$	
	$\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $	
	$= \left \frac{2 + \frac{3}{5}}{1 + 2 \times -\frac{3}{5}} \right $	1 Mark: D
	$= \begin{vmatrix} \frac{13}{5} \\ -\frac{1}{5} \end{vmatrix}$	
	=13	
	θ = 85.601294 ≈ 86°	
	For $y=1-3x$ then $m_1 = -3$ For $4x-6y-5=0$ then $m_2 = \frac{2}{3}$	
40	$\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $	
	$= \left \frac{-3 - \frac{2}{3}}{1 + -3 \times \frac{2}{3}} \right $	1 Mark: D
	$= \begin{vmatrix} -\frac{11}{3} \\ -1 \end{vmatrix}$	
	$=\frac{11}{2}$	
	$\theta = 74.7448813 \approx 75^{\circ}$	
	For $y = 2x - 1$ then $m_1 = 2$	
	For $x-3y+6=0$ then $m_2 = \frac{1}{3}$	
41	$\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $	
	$= \left \frac{2 - \frac{1}{3}}{1 + 2 \times \frac{1}{3}} \right $	1 Mark: A
	$=\frac{\left \frac{5}{3}\right }{\left \frac{5}{3}\right }$	
	$=1$ $\theta = 45^{\circ}$	
L	V - 17	l

	For $y = 7 - 4x$ then $m_1 = -4$	
42	For $2x-3y-6=0$ then $m_2=\frac{2}{3}$	
	$\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $ $= \left \frac{-4 - \frac{2}{3}}{1 + -4 \times \frac{2}{3}} \right $	1 Mark: C
	$= \frac{14}{5}$ $\theta = 70.34617594 \approx 71^{\circ}$	
	For $2x - y - 7 = 0$ then $m_1 = 2$	
	For $3x - 5y - 2 = 0$ then $m_2 = \frac{3}{5}$	
43	$\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$	1 Mark: B
	$= \left \frac{2 - \frac{3}{5}}{1 + 2 \times \frac{3}{5}} \right = \frac{7}{11}$	
	θ = 32.47119229 ≈ 32°28'	
	For $3x + 4y = 8$ then $m_1 = -\frac{3}{4}$	
	For $2x + 3y = 5$ then $m_2 = -\frac{2}{3}$	
44	$\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$	1 Mark: A
	$= \left \frac{-\frac{3}{4}\frac{2}{3}}{1 + -\frac{3}{4} \times -\frac{2}{3}} \right = \frac{1}{18}$ $0 = 2.17092012 \times 2^{2}111$	
	$\theta = 3.17983012 \approx 3^{\circ}11^{\circ}$ For $y - \sqrt{3x} - 6 = 0$ then $m_1 = \sqrt{3}$	
	For $\sqrt{3}y - x + 2 = 0$ then $m_2 = \frac{1}{\sqrt{3}}$	
	$\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $	
45	$= \left \frac{\sqrt{3} - \frac{1}{\sqrt{3}}}{1 + \sqrt{3} \times \frac{1}{\sqrt{3}}} \right $	1 Mark: B
	$=\frac{\frac{3-1}{\sqrt{3}}}{2}=\frac{1}{\sqrt{3}}$	
	$\theta = 30^{\circ}$	

	Gradient between $P(-4,1)$ and $Q(4,5)$.	
46	For $x + 2y - 10 = 0$ then $m_2 = -\frac{1}{2}$ $\tan \angle PQR = \begin{vmatrix} \frac{1}{2} - (-\frac{1}{2}) \\ \frac{1}{2} - (-\frac{1}{2}) \\ 1 + \frac{1}{2} \times (-\frac{1}{2}) \end{vmatrix}$ $= \frac{1}{\frac{1}{2}} = \frac{4}{3}$	1 Mark: D
	$\angle PQR = 53.13010235 \approx 53^{\circ}$	
47	For $2x-3y+5=0$ then $m=\frac{2}{3}$ Angle the line makes with the x-axis $\tan \theta = \frac{2}{3}$ $\theta = 33.69006753 \approx 34^{\circ}$ Angle the line makes with the y-axis $90^{\circ} - 34^{\circ} = 56^{\circ}$	1 Mark: C
48	$y = x^{2} y = (x-2)^{2}$ $\frac{dy}{dx} = 2x \frac{dy}{dx} = 2(x-2)$ At (1,1) then $m_{1} = 2$ and $m_{2} = -2$ $\tan \theta = \left \frac{m_{1} - m_{2}}{1 + m_{1} m_{2}} \right $ $= \left \frac{2 - 2}{1 + 2x - 2} \right $ $= \frac{4}{3}$ $\theta = 53.13010235 \approx 53$	1 Mark: C

		THE COLUMN TWO IS NOT	
49	$y = 3x^{2}$ $\frac{dy}{dx} = 6x$ At (0,0) then $m_{1} = 0$ and $m_{2} = 4$ $\tan \theta = \left \frac{m_{1} - m_{2}}{1 + m_{1} m_{2}} \right $ $= \left \frac{0 - 4}{1 + 0 \times 4} \right $ $= 4$ $\theta = 75.96375653 \approx 75^{\circ}58'$	$y = 4x - x^2$ $\frac{dy}{dx} = 4 - 2x$	1 Mark: D
50	$y = \sqrt{x}$ $\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$ At (4,2) then $m_1 = \frac{1}{4}$ and $m_2 = 2$ $\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $ $= \left \frac{\frac{1}{4} - 2}{1 + \frac{1}{4} \times 2} \right $ $= \frac{7}{6}$ $\theta = 49.39870535 \approx 49$	$y = \frac{x^2}{4} - 2$ $\frac{dy}{dx} = \frac{1}{2}x$	1 Mark: C