## Parametric representation

Solutions

Main Menu

- 63 A curve has parametric equations x = t + 1 and  $y = 2t^2$ . What is Cartesian equation of this curve?
  - (A)  $y = 2\sqrt{(x-1)}$
  - (B)  $y=2\overline{)(x+1)}$
  - (C)  $y = 2(x-1)^2$
  - (D)  $y = 2(x+1)^2$
- **64** A curve has parametric equations  $x = \frac{2}{t}$  and  $y = 2t^2$ .

What is Cartesian equation of this curve?

- $(A) \quad y = \frac{4}{x}$
- (B)  $y = \frac{8}{x}$
- (C)  $y = \frac{4}{x^2}$
- (D)  $y = \frac{8}{x^2}$
- 65 What is the equation of the chord of the parabola joining the points with parameters 1 and -3 on x = 4t and  $y = 2t^2$ ?
  - (A) x-y-3=0
  - (B) x+y-3=0
  - (C) x-y-6=0
  - (D) x+y-6=0
- 66 A parabola has the parametric equations x = 12t and  $y = -6t^2$ .

What are the coordinates of the focus?

- (A) (-6,0)
- (B) (0,-6)
- (C) (6,0)
- (D) (0,6)

- 67 What is the equation of the chord of contact of  $x^2 = 4y$  from the point (-2, -1)?
  - (A) x+y-1=0
  - (B) x+y+4=0
  - (C) x+2y-1=0
  - (D) x+2y+4=0
- 68 What is the equation of the tangent to  $x^2 = 4y$  at the point  $(2t, t^2)$ ?
  - (A) y = tx 2t
  - (B) y = tx + 2t
  - (C)  $y = tx t^2$
  - (D)  $y = tx + t^2$
- 69 What is the equation of the normal to x = 2at,  $y = at^2$  at the point t = p?
  - $(A) \quad x py = 2ap + ap^2$
  - (B)  $x py = 2ap + ap^3$
  - (C)  $x + py = 2ap + ap^2$
  - (D)  $x + py = 2ap + ap^3$
- 70 Which of the following is the correct equation for y = mx + b to be a tangent to the parabola  $x^2 = 4ay$ ?
  - (A) am-b=0
  - (B)  $am^2 b = 0$
  - (C) am + b = 0
  - (D)  $am^2 + b = 0$
- 71  $P(2ap, ap^2)$  is a variable point on the parabola  $x^2 = 4ay$ . The tangent to the parabola at P meets the y-axis at T. What are the coordinates of T?
  - (A) (0,-ap)
  - (B)  $(0, -ap^2)$
  - (C) (0, -2ap)
  - (D)  $(0,-2ap^2)$

72 The diagram shows the parabola  $x^2 = 4ay$  with focus S(0,a) and directrix y = -a. The point  $P(2ap, ap^2)$  is a point on the parabola. The line PR is parallel to the y-axis and R is on the directrix. The tangent at P meets the x-axis at T.



What is the equation of the tangent at P?

- $(A) \quad y = ax ap^2$
- (B)  $y = px ap^2$
- (C) y = ax 2ap
- (D) y = px 2ap
- 73  $P(2at, at^2)$  is any point on the parabola  $x^2 = 4ay$ . The line k is parallel to the tangent at P and passes through the focus S of the parabola. The line k intersects the x-axis at the point Q. What are the coordinates of the midpoint, M, of the interval QS?
  - (A)  $(-\frac{a}{2}, -\frac{a}{2t})$
  - (B)  $(-\frac{a}{2t}, \frac{a}{2})$
  - (C)  $(\frac{a}{2}, -\frac{a}{2t})$
  - (D)  $(-\frac{a}{2t}, \frac{a}{2})$

- 74 A straight line is drawn from a point  $P(2at, at^2)$  on the parabola  $x^2 = 4ay$  to the vertex. This line intersects on the directrix at D. What are the coordinates of D?
  - (A)  $\left(\frac{-2a}{p}, -a\right)$
  - (B)  $(\frac{2a}{p}, -a)$
  - (C)  $(\frac{-p}{2a}, -a)$
  - (D)  $(\frac{p}{2a}, -a)$
- 75 What is the equation of the locus of a point P(x, y) which moves such that its distances from the point A(1,4) is four times its distance from the point B(-2,1)?
  - (A)  $x^2 + 6x + y^2 + 1 = 0$
  - (B)  $3x^2 + 14x + 3y^2 8y + 3 = 0$
  - (C)  $5x^2 + 22x + 5y^2 8y + 21 = 0$
  - (D)  $15x^2 + 66x + 15y^2 8y + 63 = 0$
- 76  $P(2ap,ap^2)$  and  $Q(2aq,aq^2)$  are points on the parabola  $x^2 = 4ay$ . PQ is a focal chord of this parabola. PT and QT are parallel to the y-axis and x-axis respectively. What is the locus of T?
  - (A)  $xy = 4a^2$
  - (B)  $xy = 4a^3$
  - (C)  $x^2y = 4a^2$
  - $(D) \quad x^2y = 4a^3$

| Para | Parametric representation Ms                                                                                                                                                                                             |           |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|      | Solution                                                                                                                                                                                                                 | Criteria  |
| 63   | $x = t+1$ $t = x-1$ Substitute $t-1$ for $x$ into $y = 2t^2$ $y = 2(x-1)^2$                                                                                                                                              | 1 Mark: C |
| 64   | $x = \frac{2}{t} \text{ or } t = \frac{2}{x}$ Substitute $\frac{2}{x}$ for $x$ into $y = 2t^2$ $y = 2(\frac{2}{x})^2$ $= \frac{8}{x^2}$                                                                                  | 1 Mark: D |
| 65   | Parameter of 1 the point is (4,2)  Parameter of -3 the point is (-12,18) $ \frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1} $ $ \frac{y-2}{x-4} = \frac{18-2}{-12-4} $ $ \frac{y-2}{x-4} = -1 $ $ y-2 = -x+4 $ $ x+y-6 = 0$ | 1 Mark: D |
| 66   | $x = 12t$ and $y = -6t^2$<br>a = 6 and the parabola is concave downwards<br>Focus is $(0, -6)$                                                                                                                           | 1 Mark: B |
| 67   | $a = 1$ given $x^2 = 4y$<br>Equation of the chord of contact $xx_0 = 2a(y + y_0)$ $x \times -2 = 2 \times 1 \times (y + -1)$ $-2x = 2y - 2$ $x + y - 1 = 0$                                                              | 1 Mark: A |

|    | To find the gradient of the tangent                                   |           |
|----|-----------------------------------------------------------------------|-----------|
|    | $y = \frac{1}{4}x^2$                                                  |           |
|    | $\frac{dy}{dx} = \frac{1}{2}x$                                        |           |
|    | $\frac{1}{dx} = \frac{1}{2}x$                                         |           |
| 68 | $At (2t, t^2) \frac{dy}{dx} = \frac{1}{2} \times 2t = t$              | 1 Mark: C |
|    | Equation of the tangent at $(2t,t^2)$                                 |           |
|    | $y - y_1 = m(x - x_1)$                                                |           |
|    | $y-t^2=t(x-2t)$                                                       |           |
|    | $y - t^2 = tx - 2t^2$                                                 |           |
|    | $y = tx - t^2$                                                        |           |
|    | Parabola is $x^2 = 4ay$                                               |           |
|    | To find the gradient of the tangent                                   |           |
|    | $y = \frac{1}{4\pi}x^2$                                               |           |
|    | 44                                                                    |           |
|    | $\frac{dy}{dx} = \frac{1}{2a}x$                                       | :         |
|    | At $(2ap, ap^2)$ $\frac{dy}{dx} = \frac{1}{2a} \times 2ap = p$        | :         |
| 69 | Gradient of the normal is $-\frac{1}{p}$                              | 1 Mark: D |
|    | Equation of the normal at $(2ap, ap^2)$                               |           |
|    | $y - y_1 = m(x - x_1)$                                                | 4         |
|    | $y - ap^2 = -\frac{1}{p}(x - 2ap)$                                    |           |
|    | $py - ap^3 = -x + 2ap$                                                |           |
|    | $x + py = 2ap + ap^3$                                                 |           |
|    | Tangent intersects the parabola at one point.                         |           |
|    | Substitute $y = mx + b$ into $x^2 = 4ay$                              |           |
|    | $x^2 = 4a(mx+b)$                                                      |           |
|    | $x^2 - 4amx - 4ab = 0$                                                |           |
| 70 | Now $\Delta = b^2 - 4ac$                                              | 1 Mark: D |
|    | $= (-4am)^2 - 4 \times 1 \times -4ab$                                 |           |
|    | $=16a^2m^2+16ab$                                                      |           |
|    | $=16a(am^2+b)$                                                        |           |
| L  | The discriminant must equal zero (one solution). Hence $am^2 + b = 0$ |           |

|    | To find the gradient of the tangent                                                  |             |
|----|--------------------------------------------------------------------------------------|-------------|
| 71 | $y = \frac{1}{4a}x^2, \frac{dy}{dx} = \frac{1}{2a}x$                                 |             |
|    | 10 00 20                                                                             |             |
|    | At $P(2ap, ap^2)$ $\frac{dy}{dx} = \frac{1}{2a} \times 2ap = p$                      |             |
|    | Equation of the tangent at $P(2ap, ap^2)$                                            | 1 Mark: B   |
|    | $y - y_1 = m(x - x_1)$                                                               | 1 WILLER. D |
|    | $y - ap^2 = p(x - 2ap)$                                                              |             |
|    | $y = px - ap^2$                                                                      |             |
|    | PT meets the y-axis when $x = 0$                                                     |             |
|    | Coordinates of $T$ are $(0, -ap^2)$                                                  |             |
|    | To find the gradient of the tangent                                                  |             |
| *  | $y = \frac{1}{4a}x^2, \frac{dy}{dx} = \frac{1}{2a}x$                                 |             |
|    |                                                                                      |             |
| 70 | At $P(2ap, ap^2)$ $\frac{dy}{dx} = \frac{1}{2a} \times 2ap = p$                      | 1 Mark: B   |
| 72 | Equation of the tangent at $P(2ap, ap^2)$                                            | 1 Mark: B   |
|    | $y-y_1=m(x-x_1)$                                                                     |             |
|    | $y - ap^2 = p(x - 2ap)$                                                              |             |
|    | $y = px - ap^2$                                                                      |             |
|    | To find the gradient of the tangent                                                  |             |
|    | $y = \frac{1}{4a}x^2, \frac{dy}{dx} = \frac{1}{2a}x$                                 |             |
|    | Tu ux Zu                                                                             |             |
|    | At $P(2at, at^2)$ $\frac{dy}{dx} = \frac{1}{2a} \times 2at = t$                      |             |
|    | Line $k$ has a gradient of $t$ and passes through $S(0, a)$                          |             |
|    | $y - y_1 = m(x - x_1)$                                                               |             |
|    | y-a=t(x-0)                                                                           |             |
| 73 | y = tx + a                                                                           | 1 Mark: D   |
|    | To find the coordinates of $Q$                                                       |             |
|    | Substitute $y = 0$ into $y = tx + a$ then $x = -\frac{a}{t}$ or $Q(-\frac{a}{t}, 0)$ |             |
|    | To find the coordinates of M                                                         |             |
|    | $x = \frac{x_1 + x_2}{2}$ $y = \frac{y_1 + y_2}{2}$                                  |             |
|    | <u> </u>                                                                             |             |
|    | $= \frac{-\frac{a}{t} + 0}{2} = -\frac{a}{2t}$ $= \frac{0 + a}{2} = \frac{a}{2}$     |             |
| L  | 2 2t                                                                                 |             |

|    | The vertex of $x^2 = 4ay$ is $O(0,0)$ .                                                                                 |           |
|----|-------------------------------------------------------------------------------------------------------------------------|-----------|
|    | Gradient of <i>OP</i> is $m = \frac{ap^2 - 0}{2ap - 0} = \frac{p}{2}$                                                   |           |
|    | Equation of <i>OP</i> is $y - y_1 = m(x - x_1)$                                                                         |           |
|    | $y-0=\frac{p}{2}(x-0)$                                                                                                  |           |
| 74 | $y = \frac{p}{2}x$                                                                                                      | 1 Mark: A |
|    | $ \begin{array}{c} 2\\ OP \text{ meets the directrix when } y = -a \end{array} $                                        |           |
|    | $-a = \frac{p}{2}x \text{ or } x = \frac{-2a}{p}$                                                                       |           |
|    | - r                                                                                                                     |           |
|    | Coordinates of <i>D</i> is $(\frac{-2a}{p}, -a)$                                                                        |           |
|    | $PA = 4PB$ $\sqrt{(x-1)^2 + (y-4)^2} = 4\sqrt{(x+2)^2 + (y-1)^2}$                                                       |           |
| 75 | $\sqrt{(x-1)^2 + (y-4)^2} = 4\sqrt{(x+2)^2 + (y-1)^2}$ $x^2 - 2x + 1 + y^2 - 8y + 16 = 16(x^2 + 4x + 4 + y^2 - 2y + 1)$ | 1 Mark: C |
|    | $15x^2 + 66x + 15y^2 - 24y + 63 = 0$                                                                                    |           |
|    | $5x^2 + 22x + 5y^2 - 8y + 21 = 0$                                                                                       |           |
|    | $Q \longrightarrow T$                                                                                                   |           |
| 76 | Coordinates of $T$ ( $2ap, aq^2$ )                                                                                      | 1 Mark: D |
|    | Focal chord $pq = -1$<br>Now $x = 2ap$ and $y = aq^2$                                                                   |           |
|    | $p = \frac{x}{2a}$ $= a \times \left(-\frac{1}{n}\right)^2 = \frac{a}{n^2}$                                             |           |
|    | Eliminating $p$                                                                                                         |           |
|    | $y = \frac{a}{\left(\frac{x}{2a}\right)^2} = \frac{4a^3}{x^2}$                                                          |           |
|    | $x^2y = 4a^3$                                                                                                           |           |