Projectile motion

Solutions

Main Menu

- 36 A rock is projected with a velocity of 29.4 ms⁻¹ at an angle of 30° to the horizontal. What is the maximum height reached by the rock? Let g be 9.8 ms⁻².
 - (A) 0.375 metres
 - (B) 7.653 metres
 - (C) 11.025 metres
 - (D) 22.050 metres
- 37 A football is kicked at an angle of α to the horizontal. The position of the ball at time t seconds is given by $x = Vt \cos \alpha$ and $y = Vt \sin \alpha \frac{1}{2}gt^2$ where g m/s² is the acceleration due to gravity and v m/s is the initial velocity of projection. What is the maximum height reached by the ball?
 - (A) $\frac{V \sin \alpha}{g}$
 - (B) $\frac{g \sin \alpha}{V}$
 - (C) $\frac{V^2 \sin^2 \alpha}{2g}$
 - (D) $\frac{g\sin^2\alpha}{2V^2}$
- 38 A particle is projected from a window 9 metres above the horizontal ground, at an angle of θ to the horizontal, where $\tan \theta = \frac{3}{4}$ and the initial velocity is 20 metres/second. What is the maximum height above the ground reached the particle? Assume $g = 10 \text{ ms}^{-2}$.
 - (A) 6.5 metres
 - (B) 7.2 metres
 - (C) 15.5 metres
 - (D) 16.2 metres

39 A particle is projected from a horizontal plane at an angle of elevation of 30° with a speed of 100 m/s. Assume the acceleration due to gravity is 10 m/s⁻². What is the equation of the trajectory?

(A)
$$y = -\frac{x}{\sqrt{3}} - \frac{x^2}{500}$$

(B)
$$y = -\frac{x}{\sqrt{3}} - \frac{x^2}{1500}$$

(C)
$$y = \frac{x}{\sqrt{3}} - \frac{x^2}{500}$$

(D)
$$y = \frac{x}{\sqrt{3}} - \frac{x^2}{1500}$$

40 A ball is thrown from the origin O with a velocity V and angle of elevation of θ , where $\theta \neq \frac{\pi}{2}$. What is the equation of flight of the ball?

(A)
$$y = -\frac{1}{2}gt^2 - Vt\sin\theta$$

(B)
$$y = -\frac{1}{2}gt^2 + Vt\sin\theta$$

(C)
$$y = x \tan \theta - \frac{1}{4h} x^2 (1 + \tan^2 \theta)$$

(D)
$$y = x \tan \theta + \frac{1}{4h} x^2 (1 + \tan^2 \theta)$$

- 41 A body is projected horizontally from the top of a cliff 20 metres above the water with a velocity of 30 m/s. What is the horizontal distance travelled?
 - (A) 20 m
 - (B) 30 m
 - (C) 60 m
 - (D) 120 m

- 42 A particle is projected with a speed of 20 m/s and passes through a point P whose horizontal distance from the point of projection is 30 m and whose vertical height above the point of projection is $8\frac{3}{4}$ m. What is the angle of elevation θ ? Take g = 10 m/s².
 - (A) $\theta = \tan^{-1}(\frac{3}{4})$
 - (B) $\theta = \tan^{-1}(\frac{4}{3})$
 - (C) $\theta = \tan^{-1}(\frac{2}{3})$
 - (D) $\theta = \tan^{-1}(\frac{3}{2})$
- 43 A stone is thrown from the top of a 15m cliff with an initial velocity of 26ms^{-1} at an angle of projection equal to $\tan^{-1}\left(\frac{5}{12}\right)$ above the horizontal. The equations of motion of the stone are $\ddot{x}=0$ and $\ddot{y}=-10$. What is the time when the stone will reach the ground?
 - (A) 2 seconds
 - (B) 3 seconds
 - (C) 4 seconds
 - (D) 5 seconds
- 44 A missile is fired from the edge of a cliff 100 m high with a velocity of 200 m/s. If the angle of projection is 20° above the horizontal, what is the time of flight? Assume the acceleration due to gravity is 10 m/s².
 - (A) 15 seconds
 - (B) 16 seconds
 - (C) 17 seconds
 - (D) 18 seconds
- 45 An object falling from rest in air is subjected to an acceleration $\ddot{x} = g \frac{v}{k}$, where g and k are constants and v is the velocity at time t. Which of the following is the correct equation for velocity?
 - (A) $v = \frac{g}{k} (1 e^{-\frac{t}{k}})$
 - (B) $v = gk(1 e^{-\frac{t}{k}})$
 - (C) $v = \frac{g}{k} (1 e^{\frac{t}{k}})$
 - (D) $v = gk(1 e^{\frac{t}{k}})$

Proj	Projectile motion M	
	Solution	Criteria
36	$h = \frac{V^2 \sin^2 \alpha}{2g}$ =\frac{(29.4)^2 \times \sin^2 30}{2 \times 9.8} = 11.025 \text{ metres}	1 Mark: C
37	$y = Vt \sin \alpha - \frac{1}{2}gt^{2}$ $\dot{y} = V \sin \alpha - gt$ Maximum height when $\dot{y} = 0$ $0 = V \sin \alpha - gt$ $t = \frac{V \sin \alpha}{g}$ Maximum height $h = V \sin \alpha \times \frac{V \sin \alpha}{g} - \frac{1}{2}g \times \left(\frac{V \sin \alpha}{g}\right)^{2}$ $= \frac{V^{2} \sin^{2} \alpha}{2g}$	1 Mark: C
38	$\ddot{y} = -10$ $\dot{y} = -10t + V \sin \theta$ $\text{When } t = 0, V = 20 \text{ implies } V \sin \theta = 20 \times \frac{3}{5} = 12$ $\dot{y} = -10t + 12$ $\dot{y} = -5t^2 + 12t + c$ When $t = 0, y = 9$ implies $c = 9$ $y = -5t^2 + 12t + 9$ Maximum height occurs when $\dot{y} = 0$ $0 = -10t + 12 \text{ or } t = \frac{6}{5}$ $y = -5 \times \left(\frac{6}{5}\right)^2 + 12 \times \frac{6}{5} + 9$ $= 16.2$	1 Mark: D

	$x = V \cos \theta t$	
-	$=100\cos 30t$	
	$=50\sqrt{3}t\tag{1}$	
	$y = -\frac{1}{2}gt^2 + V\sin\theta t$	
	$=-\frac{1}{2}\times10\times t^2+100\sin 30t$	
39	$= -5t^2 + 50t (2)$	1 Mark: D
	From eqn (1) $t = \frac{x}{50\sqrt{3}}$ sub into eqn (2)	
	$y = -5 \times \left(\frac{x}{50\sqrt{3}}\right)^2 + 50 \times \frac{x}{50\sqrt{3}}$	
	$=\frac{x}{\sqrt{3}} - \frac{x^2}{1500}$	
	$x = Vt\cos\theta \tag{1}$	
	$y = -\frac{1}{2}gt^2 + Vt\sin\theta \tag{2}$	
40	From eqn (1) $t = \frac{x}{V \cos \theta}$ sub into eqn (2)	
	$y = -\frac{1}{2}g(\frac{x}{V\cos\theta})^2 + V(\frac{x}{V\cos\theta})\sin\theta$	
	$= -\frac{gx^2}{2V^2\cos^2\theta} + \frac{\sin\theta x}{\cos\theta}$	1 Mark: C
	$= -\frac{gx^2 \sec^2 \theta}{2V^2} + \tan \theta x$	
	$= -\frac{2gx^2\sec^2\theta}{4V^2} + \tan\theta x$	
	$= -\frac{x^2 \sec^2 \theta}{4h} + \tan \theta x$	
	$= x \tan \theta - \frac{1}{4h} x^2 (1 + \tan^2 \theta)$	

41	$\ddot{x} = 0$ $\dot{x} = V \cos \theta$ When $t = 0$, $V = 30$, $\theta = 0$ implies $V \cos \theta = 30$ $\dot{x} = 30$ x = 30t + c When $t = 0$, $x = 0$ implies $c = 0$ x = 30t $\ddot{y} = -10$ $\dot{y} = -10t + V \sin \theta$ When $t = 0$, $V = 30$, $\theta = 0$ implies $V \sin \theta = 0$ $\dot{y} = -10t$. $y = -5t^2 + c$ When $t = 0$, $y = 20$ implies $c = 20$ $y = -5t^2 + 20$ Particle reaches the water when $y = 0$ $0 = -5t^2 + 20$ or $t = 2$	1 Mark: C
	Horizontal distance travelled	
	$x = 30t = 30 \times 2 = 60 \text{ m}$	
42	$x = Vt \cos \theta$ $= 20t \cos \theta$ $= -\frac{1}{2} x + Vt \sin \theta$ $= -\frac{1}{2} \times 10 \times t^2 + 20t \sin \theta$ $= 5t^2 + 20t \sin \theta$ At $P(30, \frac{35}{4})$ $30 = 20t \cos \theta$ or $t = \frac{3}{2 \cos \theta}$ $\frac{35}{4} = -5t^2 + 20t \sin \theta$ $7 = -4t^2 + 16t \sin \theta$	1 Mark: B
	$7 = -4\left(\frac{3}{2\cos\theta}\right)^2 + 16 \times \left(\frac{3}{2\cos\theta}\right) \times \sin\theta$ $7 = -9\sec^2\theta + 24\tan\theta$	
	$7 = -9(\tan^2\theta + 1) + 24\tan\theta$	
	$9 \tan^2 \theta - 24 \tan \theta + 16 = 0$	
	$(3\tan\theta - 4)^2 = 0$	
	$3 \tan \theta = 4$	
	$\tan \theta = \frac{4}{3} \text{ or } \theta = \tan^{-1}(\frac{4}{3})$	

	Impact occurs when $y = 0$	
	$\ddot{y} = -10$	
	$\dot{y} = -10t + c$	
	When $t = 0$, $V = 26$ and $\tan \theta = \frac{5}{12} (\sin \theta = \frac{5}{13})$	
43	Hence $\dot{y} = V \sin \theta = 26 \times \frac{5}{13} = 10$ and $c = 10$	1 Mark: B
	$\dot{y} = -10t + 10$	
	$y = -5t^2 + 10t + c$	
	When $t = 0$, $y = 15$ and hence $c = 15$	
	$y = -5t^2 + 10t + 15$	
	$= -5(t^2 - 2t - 3)$	
	=-5(t-3)(t+1)	
	Therefore if $y = 0$ then $t = 3$	
	Impact occurs when $y = 0$	
	$\ddot{y} = -10$	
	$\dot{y} = -10t + c$	
	When $t = 0$, $V = 200$ and $\theta = 20^{\circ}$	
	Hence $\dot{y} = V \sin \theta = 200 \sin 20^{\circ}$ and $c = 200 \sin 20^{\circ}$	1 Mark: A
	$\dot{y} = -10t + 200\sin 20^{\circ}$	
44	$y = -5t^2 + 200\sin 20^\circ t + c$	
44	When $t = 0$, $y = 100$ and hence $c = 100$	
	$y = -5t^2 + 200\sin 20^\circ t + 100$	
	$=-5(t^2-40\sin 20^{\circ}t-20)$	
	Therefore if $y = 0$ then $t = \frac{40 \sin 20 \pm \sqrt{(-40 \sin 20)^2 - 4 \times 1 \times -20}}{2}$	
	=15.012985 or -1.3321800	
	≈15	

	$\ddot{x} = g - \frac{v}{k}$	
	$\frac{dv}{dt} = g - \frac{v}{k} = \frac{kg - v}{k}$	
	$\frac{dt}{dv} = \frac{k}{kg - v}$	
	$t = \int \frac{k dv}{kg - v}$	
	$= -k \ln(kg - v) + c$	
	Initial conditions $t = 0$ and $v = 0$	
45	$0 = k \log_e(kg) + c \text{ or } c = k \log_e(kg)$	1 Mark: B
	$t = -k \ln(kg - v) + k \log_e(kg)$	
	$\frac{t}{k} = \ln \frac{kg}{kg - \nu}$	
	$e^{\frac{t}{k}} = \frac{kg}{kg - v}$	
	$kg - v = kge^{-\frac{t}{k}}$	
	$v = kg - kge^{-\frac{l}{k}}$	
	$=gk(1-e^{-\frac{l}{k}})$	