Applications of calculus to the physical world Solutions Main Menu

- 65 Ten kilograms of chlorine is placed in water and begins to dissolve. After t hours the amount A kg of undissolved chlorine is given by $A = 10e^{-kt}$. What is the value of k given that A = 3.6 and t = 5?
 - (A) -0.717
 - (B) -0.204
 - (C) 0.204
 - (D) 0.717
- 66 The population of a colony of bugs is increasing continuously at a rate proportional to the existing population. The present population is 20 000 and the population 3 months ago was 8000. What is the value of *k*?
 - (A) -0.916
 - (B) -0.305
 - (C) 0.305
 - (D) 0.916
- 67 The population of a town is falling at a constant rate, so that after 25 years the population will have halved, and $\frac{dP}{dt} = -kP$, where P is the population of the town and t is the time in years. What is the value of k?
 - (A) $\frac{\ln 0.5}{-25}$
 - (B) $\frac{\ln 0.5}{25}$
 - (C) $\frac{\ln 2}{-25}$
 - (D) $\frac{\ln 2}{25}$
- 68 It is assumed that the number N(t) of ants in a certain nest at time $t \ge 0$ is given by $N(t) = \frac{A}{1 + e^{-t}}$ where A is a constant and t is measured in months. At time t = 0, N(t) is estimated at 2×10^5 ants. What is the value of A?
 - (A) 2×10^5
 - (B) 2×10^{-5}
 - (C) 4×10^5
 - (D) 4×10^{-5}

- 69 A flat circular disc is being heated so that the rate of increase of the area (A in m^2), after t hours, is given by $\frac{dA}{dt} = \frac{1}{8}\pi t$. Initially the disc has a radius of 2 metres. Which of the following is the correct expression for the area after t hours?
 - $(A) \quad A = \frac{1}{8}\pi t^2$
 - (B) $A = \frac{1}{16}\pi t^2$
 - (C) $A = \frac{1}{8}\pi t^2 + 4\pi$
 - (D) $A = \frac{1}{16}\pi t^2 + 4\pi$
- 70 A circular metal plate of area $A \text{ cm}^2$ is being heated. It is given that $\frac{dA}{dt} = \frac{\pi t}{32} \text{ cm}^2/\text{h}$.

What is the exact area of the plate after 8 hours, if initially the plate had a radius of 6 cm?

(A) π

(B) 0.25π

(C) 36π

- (D) 37π
- 71 A particle moves along a straight line so that its distance x, in metres from a fixed point O is given by $x = \cos t + t$, where t is the time measured in seconds. When does the particle first come to rest?
 - (A) $\frac{\pi}{4}$ seconds
 - (B) $\frac{\pi}{2}$ seconds
 - (C) $\frac{3\pi}{4}$ seconds
 - (D) $\frac{3\pi}{2}$ seconds
- 72 A particle moves along the x-axis with acceleration 3t-2. Initially it is 4 units to the right of the origin, with a velocity of 2 units per second. What is the position of the particle after 5 seconds?
 - (A) 37.5 units to the right
 - (B) 37.5 units to the left
 - (C) 51.5 units to the right
 - (D) 51.5 units to the left

73 The displacement, x metres, from the origin of a particle moving in a straight line at any time (t seconds) is shown in the graph.

When was the particle at rest?

- (A) t = 4.5 and t = 11.5
- (B) t = 0
- (C) t=2, t=8 and t=14
- (D) t = 1.5 and t = 8
- 74 A particle is moving in a straight line, starting from the origin. At time t seconds the particle has a displacement of x metres from the origin, velocity of v ms⁻¹ and acceleration of a ms⁻². The displacement is given by $x = t 2\log_e(t^2 + 1)$. Which of the following is the correct expression for the velocity v?
 - (A) $v = 1 \frac{2}{t^2 + 1}$
 - (B) $v = 1 \frac{4t}{t^2 + 1}$
 - (C) $v = t \frac{2}{t^2 + 1}$
 - (D) $v = t \frac{4t}{t^2 + 1}$
- 75 The acceleration of a particle moving in a straight line is given by the formula a = 12t + 6. Initially the particle is at x = 5 metres and the initial velocity of the particle is -36 m/s. When is the particle at rest?
 - (A) t = 0
 - (B) t = 1
 - (C) t = 2
 - (D) t = 3

- 76 A particle moves along a straight line about a fixed point O so that its acceleration, $a \text{ ms}^{-2}$, at time t seconds is given by $a = 4\cos\left(2t + \frac{\pi}{6}\right)$. Initially the particle is moving to the right with a velocity of 1 ms⁻¹ from a position $\frac{\sqrt{3}}{2}$ metres to the left of O. Which of the following is the correct expression for the velocity of the particle after t seconds?
 - (A) $v = 2\sin\left(2t + \frac{\pi}{6}\right)$
 - (B) $v = 2\sin\left(2t + \frac{\pi}{6}\right) + 1 \sqrt{3}$
 - (C) $v = 4\sin\left(2t + \frac{\pi}{6}\right)$
 - (D) $v = 4\sin\left(2t + \frac{\pi}{6}\right) 1$

App	lications of calculus to the physical world	Main Menu
	Solution	Criteria
	$A = 10e^{-kt}$	
65	$3.6 = 10e^{-k \times 5}$	
	$e^{-5k} = 0.36$	
	$-5k\log_e e = \log_e 0.36$	1 Mark: C
	$k = \frac{\log_e 0.36}{-5}$	
	$-5 = 0.2043302495 \approx 0.204$	·
	$P = 8000e^{kt}$	
66	$20000 = 8000e^{k \times 3}$	
	$e^{3k} = 2.5$	
	$3k\log_e e = \log_e 2.5$	1 Mark: C
	$k = \frac{\log_e 2.5}{3}$	
	= 0.305430244 ≈ 0.305	
	Exponential decay $P = P_0 e^{-kt}$	
	When $t = 25$ then $P = \frac{P_0}{2}$	
	$P_{0} = kx^{25}$	
	$P_0 = \frac{P_0}{2}e^{-k \times 25}$	
67	$e^{-25k} = \frac{1}{2}$	1 Mark: A
	$\ln e^{-25k} = \ln 0.5$	
	$-25k = \ln 0.5$	
	$k = \frac{\ln 0.5}{-25}$	
	-25	
68	$N(t) = \frac{A}{1 + e^{-t}}$	
		1 Mark: C
	$2\times10^5 = \frac{A}{1+e^0}$	111111111
	$A = 4 \times 10^5$	
	$A = \pi r^2 = \pi \times 2^2 = 4\pi \text{ m}^2$	
69	$A = \int_{\frac{\pi}{8}} \pi t dt \qquad \text{When } t = 0, A = 4\pi 4\pi = \frac{1}{16} \pi 0^2 + c$	
		1 Mark: D
	$=\frac{1}{16}\pi t^2 + c \qquad c = 4\pi$	
	Hence $A = \frac{1}{16}\pi t^2 + 4\pi$	
	16	

	$A = \pi r^2 = \pi \times 6^2 = 36\pi \text{ cm}^2$	
70	$A = \int \frac{\pi t}{32} dt \qquad \text{When } t = 0, A = 36\pi 36\pi = \frac{1}{64}\pi 0^2 + c$ $= \frac{1}{64}\pi t^2 + c \qquad c = 36\pi$ Hence $A = \frac{1}{64}\pi t^2 + 36\pi$ $= \frac{1}{64}\pi \times 8^2 + 36\pi = 37\pi$	1 Mark: D
	Particle comes to rest if $v = 0$ $v = \frac{dx}{dt}$	
71	$0 = -\sin t + 1$ $\sin t = 1$	1 Mark: B
	$t = \frac{\pi}{2}$ seconds	
72	$a = 3t - 2$ $v = \frac{3t^2}{2} - 2t + c$ When $t = 0$ then $v = 2$ $2 = \frac{3 \times 0^2}{2} - 2 \times 0 + c \text{ or } c = 2$ $v = \frac{3t^2}{2} - 2t + 2$ $x = \frac{t^3}{2} - t^2 + 2t + k$ When $t = 0$ then $x = 4$ $4 = \frac{0^3}{2} - 0^2 + 2 \times 0 + k \text{ or } k = 4$ $x = \frac{t^3}{2} - t^2 + 2t + 4$ When $t = 5$ $x = \frac{5^3}{2} - 5^2 + 2 \times 5 + 4$ $= 51.5 \text{ units}$	1 Mark: C
73	Particle at rest if $v = 0$ (stationary points of the curve) $t = 4.5$ and $t = 11.5$	1 Mark: A

	$x = t - 2\log_e\left(t^2 + 1\right)$	
74	$v = 1 - \frac{2}{t^2 + 1} \times 2t$	1 Mark: B
	$=1-\frac{4t}{t^2+1}$	
	a = 12t + 6	
	$v = 6t^2 + 6t + c$	
	When $t = 0$ then $v = -36$	1 Mark: C
75	$-36 = 6 \times 0^2 + 6 \times 0 + c \text{ or } c = -36$	
	$v = 6t^2 + 6t - 36$	
	=6(t+3)(t-2)	
	Particle at rest ($v = 0$) when $t = 2$	
	$v = \int 4\cos\left(2t + \frac{\pi}{6}\right)dt$	
76	$=2\sin\left(2t+\frac{\pi}{6}\right)+c$	
	When $t = 0$, $v = 1$	1 Mark: A
	$1 = 2\sin\left(2\times 0 + \frac{\pi}{6}\right) + c$	
	$c = 1 - 2\sin\left(2 \times 0 + \frac{\pi}{6}\right) = 0$	
	$\therefore \ \nu = 2\sin\left(2t + \frac{\pi}{6}\right)$	