## Simple harmonic motion

Solutions

Main Menu

- 46 A particle moving in a straight line obeys  $v^2 = -x^2 + 2x + 8$  where x is its displacement from the origin in metres and v is its velocity in ms<sup>-1</sup>. The motion is simple harmonic. What is the amplitude?
  - (A)  $2\pi$  metres
  - (B) 3 metres
  - (C) 8 metres
  - (D) 9 metres
- 47 The speed  $\nu$  (cm/s) of a particle moving in a straight line is given by  $\nu^2 = 6 + 4x 2x^2$ , where the magnitude of its displacement from a fixed point O is x cm. The motion is simple harmonic. What is the centre of the motion?
  - (A) x = -2
  - (B) x = -1
  - (C) x = 1
  - (D) x=2
- 48 A particle is moving with simple harmonic motion in a straight line so that its displacement x cm from a fixed point O in the line at time t is defined by  $x = 4 \sin 2t$ . Which of the following is the correct equation for v as a function of x?
  - (A)  $v = \pm \sqrt{4(1-4x^2)}$
  - (B)  $v = \pm \sqrt{4(16 x^2)}$
  - (C)  $v = \pm \sqrt{4(1-4x^2)}$
  - (D)  $v = \pm \sqrt{16(4-x^2)}$
- 49 A particle is moving in a straight line with  $v^2 = 36 4x^2$  and undergoing simple harmonic notion. If the particle is initially at the origin, which of the following is the correct equation for its displacement in terms of t?
  - (A)  $x = 2\sin(3t)$
  - (B)  $x = 3\sin(2t)$
  - (C)  $x = 2\sin(9t)$
  - (D)  $x = 3\sin(4t)$

- 50 The rise and fall of tides is approximated to simple harmonic motion. In a tidal river the depth of water of low tide is 2 m at 11.00 a.m. The following high tide is at 5.20 p.m. and the depth of water is 6 m. What times could a boat safely cross the river, if a minimum depth of water is 3.5 m?
  - (A) Between 12.40 p.m. and 8.00 p.m.
  - (B) Between 1.40 p.m. and 8.00 p.m.
  - (C) Between 12.40 p.m. and 9.00 p.m.
  - (D) Between 1.40 p.m. and 9.00 p.m.
- 51 A particle moving in simple harmonic motion starts from rest at a distance 6 metres from the centre of oscillation. The period is  $4\pi$  seconds. What is the time taken to move to a point 3 metres from the origin?
  - (A)  $t = \frac{\pi}{3}$
  - (B)  $t = \frac{\pi}{6}$
  - $(C) \quad t = \frac{2\pi}{3}$
  - (D)  $t = \frac{5\pi}{6}$
- 52 A point moving with simple harmonic motion starts from a point 5 cm from the centre of the motion with a speed of 1 cm/s. The period is 8 seconds. What is the maximum acceleration?
  - (A) 4.9 ms<sup>-2</sup>

(B) 5.2 ms<sup>-2</sup>

(C) 24.4 ms<sup>-2</sup>

- (D) 25.6 ms<sup>-2</sup>
- 53 A particle is moving in a straight line so that its acceleration at any time is given by  $\ddot{x} = -4x$ . What is the period and amplitude given that t = 0, x = 3 and  $v = -6\sqrt{3}$ ?
  - (A)  $T = \frac{\pi}{2}$  and a = 3
  - (B)  $T = \frac{\pi}{2}$  and a = 6
  - (C)  $T = \pi$  and a = 3
  - (D)  $T = \pi$  and a = 6
- 54 A particle moves in a straight line and its position at any time t is given by  $x = 3\cos 2t + 4\sin 2t$ . The motion is simple harmonic. What is the greatest speed?
  - (A) 6

(B) 10

(C) 12

(D) 20

| Sim | le harmonic motion Main Menu                                                                                                                                                                                |           |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|     | Solution                                                                                                                                                                                                    | Criteria  |
| 46  | $v^{2} = -x^{2} + 2x + 8$ $= 1^{2}(8 + 2x - x^{2})$ $= 1^{2}(9 - (x - 1)^{2})$ $= n^{2}(a^{2} - x^{2})$ $a^{2} = 9$ $a = 3$ Amplitude is 3 metres                                                           | 1 Mark: B |
| 47  | $v^{2} = 6 + 4x - 2x^{2}$ $\frac{1}{2}v^{2} = \frac{6 + 4x - 2x^{2}}{2}$ $a = \frac{d}{dx}(3 + 2x - x^{2})$ $= 2 - 2x$ $\ddot{x} = -2(x - 1)$ Centre of motion is $x = 1$                                   | 1 Mark: C |
| 48  | $x = 4\sin 2t$ $v = \frac{dx}{dt} = 8\cos 2t$ $v^2 = 64\cos^2 2t$ $= 64(1-\sin^2 2t)$ $= 64\left(1-\frac{x^2}{16}\right)$ $= 4(16-x^2)$ $v = \pm\sqrt{4(16-x^2)}$                                           | 1 Mark: B |
| 49  | $v^{2} = 36 - 4x^{2}$ $= 2^{2}(9 - x^{2})$ $= n^{2}(a^{2} - x^{2})$ $a^{2} = 9 \text{ or } a = 3, n = 2 \text{ and } \alpha = 0 \text{ (initially at the origin)}$ $x = a \sin(nt + \alpha)$ $= 3 \sin(2t)$ | 1 Mark: B |

|    | T                                                                                                                            |           |
|----|------------------------------------------------------------------------------------------------------------------------------|-----------|
|    | Time between low and high tide is 6 hours and 20 minutes ( $6\frac{1}{3}$ h)                                                 |           |
|    | Period $T = 2 \times 6\frac{1}{3} = 12\frac{2}{3}$ h and $n = \frac{2\pi}{T} = \frac{2\pi}{12\frac{2}{3}} = \frac{3\pi}{19}$ |           |
|    | Depth of water. Low tide = 2m and High tide = 6m                                                                             |           |
|    | Mean tide = 4m and amplitude = 2m                                                                                            |           |
|    | Therefore $x = -2\cos\frac{3\pi t}{19}$                                                                                      |           |
| 50 | Boat can safely travel when $x \ge -0.5$                                                                                     | 1 Mark: D |
|    | $-0.5 = -2\cos\frac{3\pi t}{19}$                                                                                             |           |
|    | $\cos\frac{3\pi t}{19} = 0.25$                                                                                               |           |
|    | $\frac{3\pi t}{19} = 1.318 \qquad \frac{3\pi t}{19} = 2\pi - 1.318$                                                          |           |
|    | t = 2.66 = 2  h 40  m $t = 10.00  h$                                                                                         |           |
|    | Between 1.40 p.m. and 9.00 p.m.                                                                                              |           |
|    | $T = \frac{2\pi}{n}$                                                                                                         |           |
|    | $4\pi = \frac{2\pi}{n} \text{ or } n = \frac{1}{2}$                                                                          |           |
|    | Amplitude is 6 metres                                                                                                        |           |
|    | $x = a\cos(nt + \alpha)$                                                                                                     |           |
| 51 | $=6\cos(\frac{1}{2}t+\alpha)$                                                                                                | 1 Mark: C |
| 31 | $=6\cos(\frac{1}{2}t)$ when $t=0$ , $x=6$ implies $\alpha=0$                                                                 |           |
|    | When $x = 3$ $3 = 6\cos\frac{1}{2}t$                                                                                         |           |
|    | $\cos\frac{1}{2}t = \frac{1}{2}$                                                                                             |           |
|    | $\frac{1}{2}t = \frac{\pi}{3} \text{ or } t = \frac{2\pi}{3}$                                                                |           |
| L  | 2 3 3                                                                                                                        |           |

|    | $_{\pi}$ $2\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| 52 | $T = \frac{2\pi}{n}$ $8 = \frac{2\pi}{n} \text{ or } n = \frac{\pi}{4}$ when $v = 1$ , $x = 5$ , $n = \frac{\pi}{4}$ $v^2 = n^2(a^2 - x^2)$ $1^2 = \frac{\pi^2}{16}(a^2 - 5^2)$ $a^2 = \frac{16}{\pi^2} + 25$ $a = \pm 5.1595677 \approx 5.2 \text{ ms}^{-2} \text{ (maximum acceleration)}$                                                                                                                                                                                                                                                                                                                 | 1 Mark: B |  |
| 53 | $\ddot{x} = -n^2 x \qquad \text{Period } T = \frac{2\pi}{n} = \frac{2\pi}{2} = \pi$ $= -4x \text{ or } n = 2$ $x = a \sin(nt + \alpha)$ $= a \sin(2t + \alpha)$ When $t = 0$ , $x = 3$ $3 = a \sin(2 \times 0 + \alpha)$ $3 = a \sin \alpha \qquad (1)$ $v = 2a \cos(2t + \alpha)$ $-6\sqrt{3} = 2a \cos(2 \times 0 + \alpha)$ $-3\sqrt{3} = a \cos \alpha \qquad (2)$ Dividing eqn (1) by eqn (2) $\tan \alpha = -\frac{1}{\sqrt{3}}$ $\alpha = \frac{5\pi}{6} \text{ (sin } \alpha > 0 \text{ and } \cos \alpha < 0)$ From eqn (1) $3 = a \sin \frac{5\pi}{6}$ $a = 6$ Period is $\pi$ and amplitude is 6. | 1 Mark: D |  |

|    | $x = 3\cos 2t + 4\sin 2t$                                         |           |
|----|-------------------------------------------------------------------|-----------|
|    | $=5\cos(2t-\alpha)$                                               |           |
|    | Here $0 < \alpha < \frac{\pi}{2}$ and $\tan \alpha = \frac{4}{3}$ |           |
|    | $\dot{x} = -10\sin(2t - \alpha)$                                  |           |
|    | $\ddot{x} = -20\cos(2t - \alpha)$                                 |           |
| 54 | Greatest speed occurs when $\ddot{x} = 0$                         | 1 Mark: B |
|    | $-20\cos(2t-\alpha)=0$                                            |           |
|    | $2t-\alpha=\frac{\pi}{2},\frac{3\pi}{2},\dots$                    |           |
|    | Therefore $\dot{x} = -10\sin(\frac{\pi}{2})$                      |           |
|    | =-10                                                              |           |
|    | Magnitude of maximum speed is 10                                  |           |