J.M.J.

MARCELLIN COLLEGE RANDWICK

EXTENSION I

MATHEMATICS

HSC TASK 2

2012

Weighting:	20%	(Assessment	Marl	c)

NAME:		
MARK:	/ 35	

Time Allowed:

45 minutes

Topics:

Parametric Equations and Applications of Calculus to the Physical World

Directions:

- · There are two questions on this paper
- Marks have been allocated for each question
- Answer each questions on a separate page
- Show all necessary working
- Marks may not be awarded for careless or badly arranged work

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} \, dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx \qquad \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x$, x > 0

Marks

1

2

2

2

Question 1 (17 marks) Use a SEPARATE writing booklet.

- (a) A piece of hot metal is placed in a room with a surrounding air temperature of 20°C and allowed to cool. It loses heat according to Newton's law of cooling, $\frac{dT}{dt} = -k(T-A)$ where T is the temperature of the metal in degrees Celsius at time t minutes, A is the surrounding air temperature and k is a positive constant. After 6 minutes the temperature of the metal is 80°C, and after a further 2 minutes it is 50°C.
 - (i) Verify that $T = A + Be^{-kt}$ satisfies the above equation.
 - (ii) Show that $k = \frac{\log_e 2}{2}$.
 - (iii) What is the value of B?
 - (iv) Determine the initial temperature of the metal.
- (b) A particle is moving such that its displacement x metres at time t seconds is given by $x = 4\cos(3t-1)$.
 - (i) Show that the motion is simple harmonic.

(ii)

- Find the centre and the period of the motion.
- (iii) Find the speed of the particle when x = 2, correct to 3 significant figures.
- (c) A particle moves in a straight line with acceleration given by $\frac{d^2x}{dt^2} = 9(x-2)$ where x is the displacement in metres from an origin O after t seconds. Initially, the particle is 4 metres to the right of O, so that x = 4, and has velocity y = -6.
 - (i) Show that $v^2 = 9(x-2)^2$.
 - (ii) Find an expression for v and hence find x as a function of t.
 - (iii) Explain whether the velocity of the particle is ever zero. 2

Marks

2

Question 2 (18 marks) Use a SEPARATE writing booklet.

(a) A batsmen stands at the crease which is at the centre of a circular cricket ground of radius 150m. He hits the ball at angle of elevation of θ with a speed of V metres / sec ond. (Take $g = 10m/s^2$).

(i) Assuming the origin is at the point at which the ball is hit, show

That the equations of motion are given by:

$$x = Vt \cos \theta$$
 and $y = -\frac{gt^2}{2} + Vt \sin \theta$.

- (ii) A batsmen hits the ball at an angle of elevation of 40° with a velocity of $36 \, m/s$. What are the maximum height and the horizontal range of the path of this ball? (Answer to two decimal places.)
- (iii) A second batsmen hits the ball at an angle of elevation of 60°. 2

 At what speed must the ball be hit in order to clear the boundary of 150 metres. (Answer to two decimal places)

Marks

3

3

2

Question 2 continued

(b) O is the centre of a circle with radius 6cm and $\angle AOB = \theta$ radians. θ is increasing at a rate of 0.2 radians/second.

- (i) Find the rate of change of the area of $\triangle AOB$
- (ii) Find the rate of change of the area of the minor segment formed by AB when $\angle AOB = \frac{2\pi}{3}$.
- (c) $P(2ap,ap^2)$ and $Q(2aq,aq^2)$ are two points on the parabola $x^2 = 4ay$.
 - (i) If the chord PQ passes through the point R(2a,3a), show that pq = p + q 3.
 - (ii) If M is the midpoint of PQ, show that the coordinates of M are $\left[a(pq+3), \frac{a}{2}\{(pq+3)^2 2pq\}\right].$
 - (iii) Hence, find the locus of M.

Question 1

(a) (i)
$$T = A + Be^{-kt}$$

$$\frac{dT}{dt} = -kBe^{-kt}$$

$$= -k(T - A)$$

$$(0 \div (2)$$

$$=480$$

(b) (i)
$$x = 4\cos(3t-1)$$

 $\dot{x} = -12\sin(3t-1)$
 $\ddot{x} = -36\cos(3t-1)$
 $= -9[4\cos(3t-1)]$
 $= -9x$
 $= -0^2x$

(iii) Centre is
$$x = 0$$

$$period = \frac{2\pi}{3}$$

$$V = \sqrt{108}$$

= $10.4 \, \text{m/s}$

$$2 = 4\cos(3t-1)$$

 $2 = \cos(3t-1)$ $V = -12\sin(\frac{\pi t3}{3}-1)$
 $\frac{\pi}{3} = 3t-1$ = 10.4m/s

(c) (i)
$$\frac{d^{3}x}{dt^{2}} = 9x - 18$$

 $\frac{d}{dx} \left(\frac{1}{2}v^{2}\right) = \frac{9x^{2}}{2} - 18x + C$
 $\frac{1}{2}(36) = \frac{9(16)}{2} - 18(4) + C$
 $\therefore C = 18$
 $\frac{1}{2}v^{2} = \frac{9x^{2}}{2} - 18x + 18$
 $v^{2} = 9x^{2} - 36x + 36$
 $v^{3} = 9(x-2)^{2}$

Since
$$\int_{A}^{h} x = 4 \text{ = } V = 6$$

 $\frac{dx}{dt} = -3x + 6$
 $\frac{dt}{dx} = -\frac{1}{3}, \frac{1}{2-2}$
 $t = -\frac{1}{3} \ln(x-2) + C$
 $C = \frac{1}{3} \ln 2$
 $t = -\frac{1}{3} \ln(x-2) + \frac{1}{3} \ln 2$
 $-3t = \ln(\frac{x-2}{2})$
 $e^{-3t} = \frac{x-2}{3}$

$$2e^{-3t} = x-2$$

 $x = 2+2e^{-3t}$

(iii)
$$\frac{dx}{dt} = -6e^{-3t}$$

when $t=0$
 $\frac{dx}{dt} = -6m/s$

as $t \to \infty$
 $e^{-3t} \to 0$ but $e^{-3t} \to 0$
 $e^{-3t} \to 0$ but $e^{-3t} \to 0$

never = zero.

Question 2

(a)
$$|\ddot{x}=0|$$
 $|\ddot{y}=-q|$
 $|\ddot{x}=V*\omega s\theta|$ $|\ddot{y}=-qt+V sin\theta|$

1

 $x = Vb\cos\theta + c$ $y = -at^2 + Vb\sin\theta + c$ t = 0, x = 0, y = 0

·. c=0

X= Vtcos&

Y=-gt2 + Vbsino.

(ii) y= 0

$$=\frac{36\sin 40}{10}$$

= 2.31 sec

$$Y = -g(2.31)^2 + 36(2.31) \sin 40$$
.

= 26.77m.

T

x = 36x 4.628 x cos40.

= 127.63 m

(

(tii) yeo

0=-5£2+VEsin60.

5t = Vsin 60

 $150 = V * \frac{V \sin 60}{5} \approx \cos 60.$

$$V^2 = \frac{150 \times 20}{\sqrt{3}}$$

:. V> 41.62 m/s 1

(b) (i)
$$A = \frac{1}{2}(6)^2 \sin \theta$$
 $A = 18 \sin \theta$.

 $dA = 18 \cos \theta$
 $d\theta = 0.2 \text{ r/sec}$

$$\frac{dA}{dt} = \frac{dA}{d\theta} > \frac{d\theta}{dt}$$

$$= 18 \cos \theta \times 0.2$$

$$= \frac{18}{5} \cos \theta$$
.

(iii) $A = \frac{1}{2}r^2(\theta - \sin \theta)$

$$\frac{dA}{d\theta} = \frac{1}{2}r^2(1 - \cos \theta)$$

$$\frac{dA}{dt} = \frac{dA}{d\theta} \times \frac{d\theta}{dt}$$

$$= 18(1 - \cos \theta) \times 0.2$$
(i)

$$= 3.6(1 - -\frac{1}{2})$$

= 5.4 cm2/s.

(c) (i)
$$P_{m} = \frac{q^{2} - q^{2}}{2p - 2q}$$
.

$$= \frac{q(p+q)(p-q)}{2k(p-q)}$$

$$= \frac{p+q}{2}$$

$$= \frac{p+q}{2}$$

$$= \frac{p+q}{2}$$

$$2y - 2ap^{2} = \frac{p+q}{2} x - 2ap^{2}$$

$$2y - 2ap^{2} = \frac{p+q}{2} x - 2ap^{2}$$

$$2y = \frac{p+q}{2} x - 2ap^{2}$$

$$R(2a, 3a)$$

$$2(3a) = \frac{p+q}{2a - 2ap^{2}}$$

$$6a = 2a(p+q) - 2ap^{2}$$

$$9x = p+q - 3$$
(ii) $M = \frac{2ap+2aq}{2}$, $\frac{ap^{2}+aq^{2}}{2}$

$$= \frac{a(p+q)}{2}$$
, $\frac{a}{2}(\frac{p+q^{2}}{2} - 2pq^{2})$

$$= \frac{a(p+q)}{2}$$
, $\frac{a}{2}(\frac{p+q^{2}}{2} - 2pq^{2})$

=
$$\left[\alpha(pq+2), \frac{\alpha}{2}\left(pq+3\right)^2 - 2p_1^2\right]$$

(iii)
$$y = \frac{\alpha}{2} \left\{ (pq+3)^2 - 2pq \right\}$$

$$pq + 3 = \frac{\alpha}{\alpha}$$

$$\therefore Y = \frac{a}{2} \left[\frac{x^2}{a^2} - 2\left(\frac{x}{a} - 3\right) \right]$$

$$Y = \frac{x^2}{2a} - 3c + 3a$$

$$2ay - 6a^2 = x^2 - 2ax$$

$$2ay - 6a^2 + a^2 = x^2 - 2ax + a^2$$

$$(x-\alpha)^2 = 2\alpha y - 5\alpha^2$$

$$(x-a)^2 = 2a\left(y - \frac{5a}{2}\right)$$