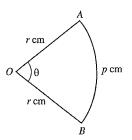

MORIAH COLLEGE - YR 12 - EXT / - RADIANS + GENERAL FORMULA (2008)

Year 12 radians

Question 1

The diagram shows a circle, centre O and radius r. The chord PQ subtends an angle 2θ radians at $0 < \theta < \frac{\pi}{2}$

O, where $\frac{0 < b < \frac{1}{2}}{2}$. The length of the minor arc PQ is 1.5 times the length of the chord PQ.


- (a) Show that $2\theta 3 \sin \theta = 0$.
- (b) Show that the area of $\triangle OPQ$ is $r^2 \sin \theta \cos \theta$.
- (c) Hence show that, for this value of θ ,

$$\frac{\text{area of sector } OPQ}{\text{area of triangle } OPQ} = \frac{3}{2\cos\theta}.$$

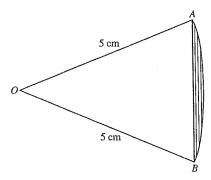
(d) By considering $f(x) = 2x - 3 \sin x$, or otherwise, show that 1.49 < 6 < 1.50

[14]

Question 2

The diagram shows a sector OAB of a circle, centre O and radius r cm. The length of the arc AB is p cm and $\angle AOB$ is θ radians.

(a) Find θ in terms of p and r.


(b) Deduce that the area of the sector is $\frac{1}{2} pr \text{ cm}^2$.

Given that r = 4.7 and p = 5.3, where each has been measured to 1 decimal place, find, giving your answer to 3 decimal places,

- (c) the least possible value of the area of the sector,
- (d) the range of possible values of θ .

[13]

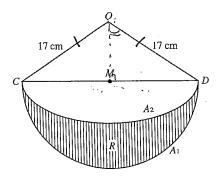
Question 3

The diagram shows a sector OAB of a circle, centre O, of radius 5 cm and a shaded segment of the circle. Given that $\angle AOB = 0.7$ radians, calculate

- (a) the area, in cm², of the sector OAB,
- (b) the area, in cm² to 2 significant figures, of the shaded segment.

[5]

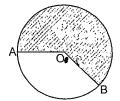
Question 4


$$f(x) \equiv 3 + 2 \sin(2x + k)^{\circ}, 0 \le x < 360,$$

where k is a constant and 0 < k < 360. The curve with equation y = f(x) passes through the point with coordinates $(15, 3 + \sqrt{3})$.

- (a) Show that k = 30 is a possible value for k and find the other possible value of k. Given that k = 30,
- (b) solve the equation f(x) = 1,
- (c) find the range of f,
- (d) sketch the graph of y = f(x), stating the coordinates of the turning points and the coordinates of the point where the curve meets the y-axis.

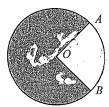
[17]


Question 5

The diagram shows the triangle OCD with OC = OD = 17 cm and CD = 30 cm. The mid-point of CD is M. With centre M, a semicircular arc A_1 is drawn on CD as diameter. With centre O and radius O 17 cm, a circular arc O 2 is drawn from O 17 to O 17. The shaded region O 18 bounded by the arcs O 19 and O 20 Calculate, giving answers to 2 decimal places,

- (a) the area of the triangle OCD,
- (b) the angle COD in radians,
- (c) the area of the shaded region R.

Question 6



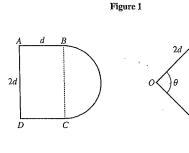
This diagram shows a circle, centre O, of radius 6 cm. The points A and B are on the circumference of the circle. The area of the shaded major sector is 80 cm². Given that $\angle AOB = \theta$ radians, where $0 < \theta < \pi$, calculate

- (a) the value, to 3 decimal places, of θ ,
- (b) the length, in cm to 2 decimal places, of the minor arc AB.

[6]

Question 7

This diagram shows a circle, centre O and radius 5 cm. The length of the minor arc AB is 6.4 cm.


(a) Calculate, in radians, the size of the acute angle AOB.

The area of the minor section AOB is $R_1 \, \mathrm{cm}^2$ and the area of the shaded major sector AOB is $R_2 \, \mathrm{cm}^2$.

- (b) Calculate the value of R_1 .
- (c) Calculate R_1 : R_2 in the form 1:p, giving the value of p to 3 significant figures.

[5]

Question 8

Shape X

Shape Y

Figure 1 shows the cross-sections of two drawer handles.

Shape X is a rectangle ABCD joined to a semicircle with BC as diameter. The length AB=d cm and BC=2d cm.

Shape Y is a sector OPQ of a circle with centre O and radius 2d cm. Angle POQ is θ radians.

Given that the areas of shapes X and Y are equal,

(a) prove that $\theta = 1 + \frac{1}{4}\pi$.

Using this value of θ , and given that d = 3, find in terms of π ,

- (b) the perimeter of shape X,
- (c) the perimeter of shape Y.
- (d) Hence find the difference, in mm, between the perimeters of shapes X and Y.

Unfold to

View Graph

Question one

(a)
$$\lambda = 1.5 pq$$

 $\lambda = 1.5 (2rsin0)$
 $\lambda = 3rsin0$
 $100 = 3rsin0$
 $100 = 3sin0 = 0$

(b)
$$A = \frac{1}{2}absin\theta$$

 $A = \frac{1}{2}r^2sin2\theta$
 $A = \frac{1}{2}r^2sin(\theta + \theta)$
 $A = \frac{1}{2}r^2sin\theta\cos\theta + sin\theta\cos\theta$
 $A = \frac{1}{2}r^2(2sin\theta\cos\theta)$
 $A = \frac{7}{2}sin\theta\cos\theta$

(d)
$$f(x) = 2x - 3\sin x$$
 ..., $f(0) = 20 - 3\sin x$
 $y = 2x - 3\sin x$... $0 = 20 - 3\sin x$
95 by do not thow $\sin x = 20$

Question Tho

(a)
$$\rho = r\theta$$

$$\theta = \frac{\rho}{r}$$

Question Three

(b) A segment =
$$\frac{1}{2}r^2(0-\sin\theta)$$

A segment = $\frac{1}{2}\times25(0.7-\sin\theta.7)$
A segment = $0.639(2.5.5.)$

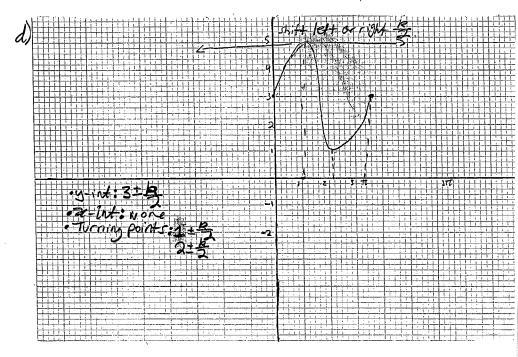
Question Four

(a)
$$3+\sqrt{3}=3+2\sin(80+k)^{6}$$
 (0
RHJ:
$$= 3+2\sin(30+0)^{6}$$

$$= 3+2\sin(60)^{6}$$

$$= 3+2\sqrt{3}$$

$$= 3+\sqrt{3}=2hS$$


$$\therefore h^{6}=30^{6} \text{ is a possible 5obtion.}$$

Since Sinho = Sin 120; Mik also can be 90.°

Question Four Continued

(6)
$$f(x) = 1$$
.
 $1 = 3 + 2 \sin(2x + 80)^{\circ}$
 $2 \sin(2x + 30) = -2$.
 $5 \sin(2x + 30)^{\circ} = -1$
 $2x + 30^{\circ} = 270^{\circ}$
 $2x = 240^{\circ}$
 $2 = 120^{\circ}$

(c)
$$f(0) = 3 + 2 \sin(0 + k)^{\circ}$$

 $f(360) = 3 + 2 \sin(360 + k)^{\circ}$
 $\therefore 3 + 2 \sin(0 + k)^{\circ} < f < 3 + 5 \sin(360 + k)^{\circ}$

Question Five

$$h^2 = 17^2 - 15^2$$
 $h^2 = 64$
 $h = 864$
 $h = 8000 \pm 13$

(b)
$$6 \sin(4000) = 15$$

 $6 \sin(4000) = 15$
 $6 \cos(400) = 15$
 $6 \cos(400) = 100$
 $6 \cos(400$

c)
$$A = \frac{1}{2} r^2 \Phi (O - \sin O)$$

 $A = 8.5 (216 - 2 \sin 2.16)$
 $A = 11.29 cm^2 (2dp)$

Question Six:
$$\frac{3}{164}$$
 d= $\frac{3}{100}$ d= $\frac{3}{100}$ d= $\frac{3}{100}$ d= $\frac{3}{100}$ d= $\frac{40}{9}$ d= $\frac{40}{9}$

avertion Seven

(a)
$$6.4=50$$

 $0=6.4$
 $0=1.28$

(b)
$$A_{R_1} = \frac{1}{2}r^2Q$$

 $A_{R_1} = \frac{1}{2} + 5 \times 1.28$
 $A_{R_1} = \frac{6.4}{2}$
 $A_{R_2} = 3.2 cm^2$

(c)
$$A_{R2} = 7CR^2 - 3.2$$

 $A_{R2} = 3ct - 3.2$
 $A_{R2} = 75.34cm^2(2dp)$
 $R_1 : R_2 = \frac{R_2}{R_3} = \frac{23.50(3.5.5.)}{45.34}$
 $\therefore P = 23.5(3.5.5.)$