

MORIAH COLLEGE

Year 12

2008 EXTENSION 1 MATHEMATICS

ASSESSMENT TASK 2 (PRE-TRIAL)

Time Allowed: 2 hours plus 5 minutes reading time.

Examiners: Lynn Bornstein, Ori Golan, Greg Wagner

Instructions:

All necessary working should be shown in every question.

Marks may be deducted for careless or badly arranged work.
 Standard integrals are at the end of the paper.

Question 1

(a) Find
$$\lim_{x\to 0} \frac{\sin 3x}{x}$$
 [2]

(b) Solve for
$$x$$
: $\frac{x}{x+1} \le \frac{1}{6}$ [3]

(d)
$$\int_{0}^{2} \frac{dx}{\sqrt{16-x^2}}$$
 [2]

(e) Find the acute angle between the lines
$$2x + y = 3$$
 and $x - y = 3$ [2] Give your answer correct to the nearest minute.

(a) The shaded area is bounded by the curve $y = \sin x$ and $y = \frac{1}{2}\sin 2x$ and the line x = k

i) Show that $k = \frac{\pi}{2}$ [1]

ii) Calculate the shaded area [3]

- (b) A normal is drawn to the curve $y = \tan x$ at $x = \frac{\pi}{4}$. Find where this normal intercepts the x-axis. Leave your answer in exact form [3]
- (c) Evaluate:

i)
$$\int_{0}^{1} \frac{dx}{4+x^{2}}$$
 correct to 2 decimal places [2]

ii)
$$\int_{4}^{\frac{\pi}{4}} \sin^2 dx$$
 in exact form [3]

Question 3

(a) Find $\int \frac{\ln x}{x} dx$ using the substitution $u = \ln x$ [2]

b)
i) Express $\cos x + \sqrt{3} \sin x$ in the form $R \cos(x - \alpha)$ where r > 0and α is in radians [2]

Hence find the general solution of the equation $\cos x + \sqrt{3} \sin x = \sqrt{2}$ [2]

iii) Give the solution in the interval $-\pi \le x \le 2\pi$ [2]

(c) The mass M (measured in kilograms) of a certain species of fish is known to grow at a rate given by $\frac{dM}{dt} = \frac{\ln t}{t}$ where $t \ge 1$ and t is measured in weeks.

After 1 week, the mass of a particular fish of this species
was 2 kilograms. Using part a) or otherwise, find its mass
after 2 weeks(correct to 2 places decimals)

ii) Find the maximum value of $\frac{dM}{dt}$, giving your answer in exact form [2] and stating the units of measurement.

- (a) i) Sketch the curve $y = 3\sin^{-1} 2x$ indicating clearly the domain and range. [2]
 - ii) Show that the equation of the tangent to the curve at $x = \frac{1}{4}$ [3] is given by $y = 4\sqrt{3}x + \frac{\pi}{2} \sqrt{3}$
 - iii) Does the tangent found in part ii) meet the curve again. [2]
 Use appropriate y-values to support your answer.
- (b) i) Prove by mathematical induction that for $n \ge 1$, $1^2 + 3^2 + ... + (2n-1)^2 = \frac{1}{3}n(2n-1)(2n+1)$ [3]
 - ii) Hence, calculate the sum: $17^2 + 19^2 + ... + 71^2$ [2]

Question 5

(a) Two yachts, A and B, subtend an angle of 60° at the base C of a cliff. From yacht A the angle of elevation of the point P, 100 metres vertically above C is 20° . Yacht B is 600 metres from C.

- i) Calculate the length AC, correct to 2 decimal places
- ii) Calculate the distance between the two yachts correct to the nearest metre. [2]

[2]

- (b) For a triangle, you are given two side lengths 4 and 5. The angles opposite these sides are α° and $(\alpha + 30)^{\circ}$ respectively.
 - i) Show this information on a triangle [1]
 - ii) Show that $\tan \alpha = \frac{10 + 4\sqrt{3}}{13}$ [3]
- (c) The volume V of a sphere of radius r mm is increasing at a constant rate of 200mm^3 per second.
 - i) Find $\frac{dr}{dt}$ in terms of r [2]
 - ii) Determine the rate in which the surface area S, of the sphere, is increasing when the radius is 50mm. [2]

[You may assume
$$V = \frac{4}{3}\pi r^3$$
 and $S = 4\pi r^2$]

- (a) Find the general solution to the equation: $\sin^2 \theta + 2\cos 2\theta = \frac{1}{2}$, where θ is measured in degrees. [3]
- (b) Consider the parabola $4ay = x^2$ where a > 0, and suppose the tangents at $P:(2ap,ap^2)$ and $Q:(2aq,aq^2)$ intersect at the point T. Let S:(0,a) be the focus of the parabola.
 - i) Find the coordinates of the point T[You may assume that the equation of the tangent at P is $y = px - ap^2$] [2]
 - ii) Show that $SP = a(p^2 + 1)$ [2]
 - iii) Suppose that P and Q move on the parabola in such a way that $SP + SQ = 4\alpha$. Show that the locus of T is a parabola. [2]
- (c) Evaluate: $\int_{0}^{\frac{1}{2}} \frac{4x}{(1+2x)^4} dx$ using the substitution u = 1+2x [3]

Question 7

Consider the function $f(x) = \frac{e^x}{3 + e^x}$

i)	Show that $f(x)$ has no stationary points	[2]
ii)	Find the coordinates of the point of inflexion of $f(x)$	[3]
iii)	Describe the behaviour of $f(x)$ as $x \to \pm \infty$	[2]
iv)	Sketch the curve of $f(x)$	[2]
v)	Explain why $f(x)$ has an inverse function	[1]

[2]

Find $f^{-1}(x)$, the inverse function of f(x), stating its domain

Solutions to Pretrial 2008

Question 1

a.
$$as x \rightarrow 0$$
 $sin 3x \rightarrow 3x$

$$\therefore \lim_{x \to 0} \frac{\sin 3x}{x} = \lim_{x \to 0} \frac{3x}{x} = 3$$

b. Note that
$$x \neq -1$$

$$\frac{x}{x+1} \le \frac{1}{6} \qquad /6(x+1)^2 \qquad \Rightarrow \qquad 6x(x+1) \le (x+1)^2$$

$$\Rightarrow \qquad 0 \le (x+1)^2 - 6x(x+1)$$

$$\Rightarrow \qquad 0 \le (x+1)[(x+1) - 6x]$$

$$\Rightarrow \qquad 0 \le (x+1)(1-5x)$$

$$\boxed{-1 < x \le \frac{1}{-1}}$$

$$x_p = \frac{(1 \times -3) + (5 \times 1)}{1 - 3} = -2$$

$$y_p = \frac{(4 \times -3) + (2 \times 1)}{1 - 3} = 5$$

$$P:(-2,5)$$

c.
$$\int_{0}^{2} \frac{dx}{\sqrt{16 - x^{2}}} = \int_{0}^{2} \frac{dx}{\sqrt{4^{2} - x^{2}}} = \left[\sin^{-1} \left(\frac{x}{4} \right) \right]_{0}^{2} = \sin^{-1} \left(\frac{1}{2} \right) = \frac{\pi}{6}$$

d. Find the acute angle between the lines
$$2x + y = 3$$
 and $x - y = 3$

$$m_1 = -2 \qquad m_1 = 1$$

$$\tan \theta = \frac{-2 - 1}{1 + 1 \times (-2)}$$
 \Rightarrow $\tan \theta = 3$ \Rightarrow $\theta = 77^{\circ}34^{\circ}$

Question 2

a. The shaded area is bounded by the curve $y = \sin x$ and $y = \frac{1}{2} \sin 2x$ and the line x = k

i. Solution to
$$\frac{1}{2}\sin 2x = 0$$
 \Rightarrow $\sin 2x = 0 \Rightarrow$ $2x = \pi$ \Rightarrow $x = \frac{\pi}{2}$ $k = \frac{\pi}{2}$

ii
$$A = \int_{0}^{\frac{\pi}{2}} (\sin x - \frac{1}{2}\sin 2x) dx$$

$$A = \left[-\cos x + \frac{1}{4}\cos 2x \right]_0^{\frac{\pi}{2}} = \frac{1}{2}u^2$$

b. The given point has coordinates: $\left(\frac{\pi}{4},1\right)$

$$y = \tan x$$
 \Rightarrow $y' = \sec^2 x$

At
$$x = \frac{\pi}{4}$$
 $y' = 2$ $\rightarrow m_{\perp} = -\frac{1}{2}$

Equation of normal $y-1=-\frac{1}{2}(x-\frac{\pi}{4})$

Intercepts the x-axis when y=0: $-1 = -\frac{1}{2}(x - \frac{\pi}{4})$

$$\frac{\pi}{4} = x \qquad \left(2 + \frac{\pi}{4}, 0\right)$$

i.
$$\int_{2}^{1} \frac{dx}{4+x^{2}} = \int_{2}^{1} \frac{dx}{2^{2}+x^{2}} = \frac{1}{2} \left[\tan^{-1} \left(\frac{x}{2} \right) \right]^{1} = \frac{1}{2} \tan^{-1} \left(\frac{1}{2} \right) = 0.23 \quad (2\text{dp})$$

ii. Using the identity:
$$\sin^2 x = \frac{1}{2} [1 - \cos 2x]$$

$$\int_{0}^{\frac{\pi}{4}} \sin^2 x dx = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} (1 - \cos 2x) dx$$

$$= \frac{1}{2} \left[x - \frac{1}{2} \sin 2x \right]_0^{\frac{\pi}{4}} = \frac{1}{2} \left(\frac{\pi}{4} - \frac{1}{2} \sin \frac{\pi}{2} \right) = \frac{\pi}{8} - \frac{1}{4}$$

a.
$$u = \ln x$$
 $\frac{du}{dx} = \frac{1}{x} \Rightarrow du = \frac{dx}{x}$

So, rewrite
$$\int \ln x \frac{dx}{x}$$
 and hence: $\int u du = \frac{u^2}{2} + C$

Therefore:
$$\int \frac{\ln x}{x} dx = \frac{1}{2} (\ln x)^2 + C$$

Ъ.

i.
$$\cos x + \sqrt{3} \sin x = R \cos(x - \alpha)$$

$$\cos x + \sqrt{3}\sin x \equiv R[\cos x \cos \alpha + \sin \alpha \sin x]$$

Comparing coefficients:
$$1 = R \cos \alpha$$
 [1]
 $\sqrt{3} = R \sin \alpha$ [2]

Dividing [2] by [1] yields:
$$\tan \alpha = \sqrt{3}$$
 $\alpha = \frac{\pi}{2}$

Adding the squares of [2] and [1] yields: R=2

$$\therefore \cos x + \sqrt{3} \sin x = 2 \cos(x - \frac{\pi}{3})$$

ii. Rewrite:
$$\cos x + \sqrt{3} \sin x = \sqrt{2}$$
 as: $2\cos(x - \frac{\pi}{3}) = \sqrt{2}$

$$\cos(x - \frac{\pi}{3}) = \frac{\sqrt{2}}{2}$$

$$\cos(x - \frac{\pi}{3}) = \frac{\sqrt{2}}{2} \qquad x - \frac{\pi}{3} = \frac{\pi}{4} + 2\pi k \qquad \Rightarrow \qquad x = \frac{7\pi}{12} + 2\pi k$$

$$x - \frac{\pi}{3} = -\frac{\pi}{4} + 2\pi k \qquad \Rightarrow \qquad x = \frac{\pi}{12} + 2\pi k$$

iii. In the interval
$$-\pi \le x \le \pi$$
 the solutions are: $x = \frac{7\pi}{12}, \frac{\pi}{12}$

Question 4

ii.
$$y = 3\sin^{-1} 2x$$

At $x = \frac{1}{4}$ $y = 3\sin^{-1} \frac{1}{2}$

Point is:
$$\left(\frac{1}{4}, \frac{\pi}{2}\right)$$

 $y' = \frac{6}{\sqrt{1 - 4x^2}}$
At $x = \frac{1}{4}$ $y' = \frac{6}{\sqrt{1 - \frac{1}{4}}} = \frac{12}{\sqrt{3}} = 4\sqrt{3}$
 $y - \frac{\pi}{2} = 4\sqrt{3}\left(x - \frac{1}{4}\right) \implies y = 4\sqrt{3}x + \frac{\pi}{2} - \sqrt{3}$

iii. Check at
$$x = -\frac{1}{2}$$
 for both tangent and curve: The y-value for the curve is

$$y_{curve} = -\frac{3\pi}{2} \approx -4.71, \ y_{line} = -3\sqrt{3} + \frac{\pi}{2} \approx -3.63$$

So, at $x = -\frac{1}{2}$ the line is *above* the curve, but at $x = \frac{1}{4}$ the curve is concave up and the line is under the curve. Therefore the line must cross the curve at an additional point.

b. Step 1: Check for
$$n=1$$

LHS:
$$1^2 = 1$$

RHS:
$$\frac{1}{3} \times 1 \times (2-1) \times (2+1) = 1$$

LHS=RHS

Step 2: Assume true for n=k, ie:

$$1^{2} + 3^{2} + \dots + (2k-1)^{2} = \frac{1}{3}k(2k-1)(2k+1)$$

Step 3: Show true for n = k+1

$$\underbrace{1^2 + 3^2 + \dots + (2k-1)^2}_{\text{assumption}} + (2k+1)^2 = \frac{1}{3}(k+1)(2k+1)(2k+3)$$

$$\frac{1}{3}k(2k-1)(2k+1) + (2k+1)^2 = \frac{1}{3}(k+1)(2k+1)(2k+3)$$

LHS:
$$\frac{1}{3}k(2k-1)(2k+1)+(2k+1)^2$$

$$(2k+1)$$
 $\left[\frac{1}{3}k(2k-1)+(2k+1)\right]$

$$\frac{1}{3}(2k+1)[k(2k-1)+3(2k+1)]$$

$$\frac{1}{3}(2k+1)[2k^2+5k+3]$$

$$\frac{1}{3}(2k+1)[(2k+3)(k+1)] \qquad \text{LHS} = \text{RHS}$$

Step 4

Shown by mathematical induction that the equality is true.

i. The required sum can be rewritten as:

$$[1^{2} + 3^{2} + \dots + 71^{2}] - [1^{2} + 3^{2} + \dots + 15^{2}]$$

$$1^{2} + 2^{2} + \dots + (2n - 1)^{2} = \frac{1}{3}n(2n - 1)(2n + 1)$$

$$\frac{1}{3} \times 36(72 - 1)(72 + 1) - \frac{1}{3} \times 8(16 - 1)(16 + 1)$$

$$\frac{1}{3} \times 36 \times 71 \times 73 - \frac{1}{3} \times 8 \times 15 \times 17 = 61516$$

Question 5

a

i.
$$AC = \frac{100}{\tan 20} = 274.75m$$

ii.
$$AB^2 = AC^2 + BC^2 - 2 \times AC \times BC \times \cos 60^\circ$$

$$AB = 520m$$

b. i. Diagram (not to scale):

ii.
$$\frac{5}{\sin(\alpha+30)} = \frac{4}{\sin\alpha}$$

$$5\sin\alpha = 4\sin(\alpha + 30)$$

$$5\sin\alpha = 4\sin\alpha\cos30 + 4\cos\alpha\sin30$$

$$5\sin\alpha = 4\sin\alpha \times \frac{\sqrt{3}}{2} + 4\cos\alpha \times \frac{1}{2}$$

$$5 \sin \alpha = 2\sqrt{3} \sin \alpha + 2 \cos \alpha$$

$$5 \sin \alpha - 2\sqrt{3} \sin \alpha = 2 \cos \alpha$$

$$(5 - 2\sqrt{3}) \sin \alpha = 2 \cos \alpha$$

$$(5 - 2\sqrt{3}) \sin \alpha = 2 \cos \alpha$$

$$\tan \alpha = \frac{2}{5 - 2\sqrt{3}}$$

$$\tan \alpha = \frac{2 \times (5 + 2\sqrt{3})}{(5 - 2\sqrt{3}) \times (5 + 2\sqrt{3})} = \frac{10 + 4\sqrt{3}}{13}$$

c. The volume V of a sphere of radius r mm is increasing at a constant rate of 200mm³ per second.

rate of 200mm per second.

Given:
$$\frac{dV}{dt} = 200$$
 $V = \frac{4}{3}\pi r^3$ \Rightarrow $\frac{dV}{dr} = 4\pi r^2$

$$S = 4\pi r^2 \Rightarrow \frac{dS}{dr} = 8\pi r$$
i. $\frac{dr}{dt} = \frac{dr}{dV} \times \frac{dV}{dt}$

$$\frac{dr}{dt} = \frac{1}{4\pi r^2} \times 200 = \frac{50}{\pi r^2} \text{mm/second}$$

ii.
$$\frac{dS}{dt} = \frac{dS}{dr} \times \frac{dr}{dt} = 8\pi r \times \frac{50}{\pi r^2} = \frac{400}{r}$$
At $r = 50$.
$$\frac{dS}{dt} = \frac{400}{50} = 8mm^2 / \text{second}$$

Question 6

a. Rewrite:
$$\sin^2 \theta + 2\cos 2\theta = \frac{1}{2}$$
: $\sin^2 \theta + 2(1 - 2\sin^2 \theta) = \frac{1}{2}$

$$2 - 3\sin^2 \theta = \frac{1}{2}$$

$$4 - 6\sin^2 \theta = 1$$

$$\sin^2 \theta = \frac{1}{2}$$

$$\sin \theta = \pm \frac{\sqrt{2}}{2}$$

$$\sin \theta = \pm \frac{\sqrt{2}}{2}$$

$$\sin \theta = \pm \frac{\sqrt{2}}{2}$$

$$\sin \theta = -45^\circ + 360k$$

$$\theta = -45^\circ + 360k$$

$$\theta = 225^\circ + 360k$$

ii.

The tangent at P is $y = px - ap^2$

The tangent at Q is $y = qx - aq^2$

Solve simultaneously: $px - ap^2 = qx - aq^2$

$$px - qx = ap^2 - aq^2$$

$$x(p-q) = a(p+q)(p-q)$$

x = a(p+q) substituting in one of the functions, yields:

$$y = pa(p+q) - ap^2$$

$$T:[a(p+q),apq]$$

$$y = apq$$

$$S:(0,a) P:(2ap,ap^{2})$$

$$SP = \sqrt{4a^{2}p^{2} + (ap^{2} - a)^{2}}$$

$$SP = \sqrt{4a^{2}p^{2} + a^{2}p^{4} - 2a^{2}p^{2} + a^{2}}$$

$$SP = \sqrt{a^{2}p^{4} + 2a^{2}p^{2} + a^{2}}$$

$$SP = \sqrt{a^{2}(p^{4} + 2p^{2} + 1)}$$

$$SP = \sqrt{a^{2}(p^{2} + 1)^{2}}$$

$$SP = a(p^2 + 1)$$

iii. We can conclude that $SQ = a(q^2 + 1)$ using the same method

Therefore $SP + SQ = a(p^2 + 1) + a(q^2 + 1)$

But we also know that SP + SQ = 4a, so: $4a = a(p^2 + 1) + a(q^2 + 1)$ Hence:

$$4 = (p^2 + 1) + (q^2 + 1)$$

$$2 = p^2 + q^2$$

$$2 = (p+q)^2 - 2pq [1]$$

At T:
$$x_i = a(p+q)$$
 $y_i = apq$

Rewriting [1]:

$$2 = \left(\frac{x_t}{a}\right)^2 - 2\left(\frac{y_t}{a}\right)$$

$$2 = \frac{x_t^2}{a^2} - \frac{2y_t}{a}$$

$$2a^2 = x_t^2 - 2ay_t$$

$$2ay_t = x_t^2 - 2a^2$$

$$y_t = \frac{x_t^2}{2a} - a$$

This is the equation of a parabola

c. Evaluate: Let
$$u = 1 + 2x$$
 $\Rightarrow \frac{du}{dx} = 2$ $\Rightarrow \frac{du}{2} = dx$
$$\frac{\frac{1}{2}}{0} \frac{4x}{(1+2x)^4} dx = \int \frac{2u-2}{u^4} \times \frac{du}{2} = \int \left(\frac{u-1}{u^4}\right) du = \int \left(u^{-3} - u^{-4}\right) du = \left[\frac{u^{-2}}{-2} - \frac{u^{-3}}{-3}\right] = \left[\frac{1}{-2u^2} + \frac{1}{3u^3}\right]$$

$$\int_{0}^{1} (1+2x)^{4} dx = \int_{0}^{1} u^{4} + \frac{1}{2} - \int_{0}^{1} \left(\frac{1}{u^{4}}\right)^{2} dt = \int_{0}^{1} (u^{4} - u^{4})^{2} dt = \left[\frac{1}{-2} - \frac{1}{-3}\right]^{2} = \left[\frac{1}{-2} + \frac{1}{24}\right] - \left[\frac{1}{-2} + \frac{1}{3}\right] = \frac{1}{12}$$

Ouestion 7

iv.

$$f(x) = \frac{e^x}{3 + e^x}$$

i. $f'(x) = \frac{3e^x}{(3+e^x)^2}$. Since $e^x > 0$ for all real x, both the numerator and the denominator are

positive for all real x. Hence f'(x) = 0 has no solution, and therefore there are no stationary points.

ii.
$$f''(x) = \frac{3e^x (3 + e^x)(3 - e^x)}{(3 + e^x)^4}$$
 For point of inflexion: $f''(x) = 0$
$$\Rightarrow 3 - e^x = 0 \Rightarrow x = \ln 3$$
 POI: $(\ln 3, 0.5)$)

iii. As $x \to \infty$ $y \to 1$ As $x \to -\infty$ $y \to 0$

v. The graph is continuous with no turning points. Passes the horizontal line test. Hence it has an inverse.

vi.
$$f^{-1}(x) = \ln\left(\frac{3x}{1-x}\right)$$
 Domain: $0 < x < 1$