

YEAR 12 REVISION 2005

Question 1.

- (i) Differentiate with respect to x:
 - (a) $3x^2 5x + 7$
 - (b) $\sqrt{x^2+4}$
 - (c) $\frac{2x+1}{x+1}$
 - (d) $x^3(x+7)^3$
- (ii) Differentiate the following functions using the method of differentiation from first principles:
 - (a) $f(x) = 2x^2 + 6x + 3$
- (iii) Show that the equation of the normal to the curve $y = x^3 + 3x$ is x + 15y - 212 = 0 at the point where x = 2

Question 2. (15 marks)

- (i) Solve the following equations:
 - (a) $3x^2 + 6x + 3 = 0$
 - (b) $x^2 6x + 4 = 0$
 - (c) $3x^4 13x^2 + 4 = 0$
 - (d) $x^2 + x \frac{2}{x^2 + x} = 1$

(ii) State whether the roots of the following equation are equal or unequal, giving reasons for your answer:

$$x^2 + 4x + 2 = 0$$

(iii) Find the values of m for which the equation

$$x^2 + (m-1)x + 3 = 0$$

has:

- (a) equal roots.
- (b) no real roots.

Question 3.

- (i) Let α and β be the roots of the equation $x^2 7x + 3 = 0$ Find the values of:
 - (a) $\alpha + \beta$
 - (b) αβ
 - (c) $(\alpha+1)(\beta+1)$
- (ii) Find the equation of the quadratic with roots $3 + \sqrt{11}$, $3 \sqrt{11}$.
- (iii) Find the values of g for which the equation $3x^2 (2g + 1)x + (3g 5) = 0$ has:
 - (a) the sum of its roots equal to the product of its roots.
 - (b) the roots as reciprocals of each other.
- (iv) Express $3x^2 x + 20$ in the form $A(x-1)^2 + B(x+2) + C$.

Question 4.

- (i) Let A and B be the fixed points (-4, 3) and (5, 3) respectively and let P be the variable point (x, y).
 - (a) Write down expressions for PA^2 and PB^2 in terms of x and y.

- (b) Suppose that P moves so that PA = 2PB. Show that locus of P is a circle.
- (c) Find the centre and radius of the circle.
- (ii) Find the equation of the parabola with focus at (-2, 2) and whose directrix is given by the equation y = 3.
- (iii) Find the coordinates of the vertex and the focus, and the equation of the directrix, of the parabola with equation:

$$y^2 - 4y + 8x + 20 = 0.$$

(iv) Hence, sketch the parabola including all relevant information.

Question 5. (7 marks)

A ball is thrown through the air and its motion is described by the parabola below.

The ball is thrown upward from O when t=0. After I second the ball reaches a height of 10m at A and then it returns to the ground after 3 seconds at B.

- (a) Show that the equation of the height, y, of the ball in terms of the time, t is given as $y = -5t^2 + 15t$.
- (b) Calculate the time, t, at which the ball reaches its maximum height and find the maximum height reached by the ball.
- (c) The velocity of the ball is given as $\frac{dy}{dt}$. Find the velocity of the ball when it hits the ground at **B**.

YEAR 12 20 ASSESSMENT! NOVEMBER 2004

$$\begin{array}{lll} \underbrace{(x^{2}+4)^{\frac{1}{2}}}_{1} & \underbrace{(x^{2}+4)^{\frac{1}{2}}}_{2} & \underbrace{(x^{2$$

= 4x+6

Q.2.

i) a)
$$3(x^2+2bc+1)=0$$

 $(x+1)^2=0$

c) Let
$$m = x^2$$

.. $3m^2 - 13m + y = 0$

.. $(3m - 1)(m - y) = 0$

.. $m = \frac{1}{3}$ or $\frac{1}{3}$

.. $x^2 = \frac{1}{3}$ or $\frac{1}{3}$

$$= M_{x}^{-1} - 5m - 11$$

3) i) a)
$$\alpha + \beta = -\frac{b}{a}$$

$$= -\frac{7}{1}$$

$$= 7$$

c)
$$(\alpha + 1)(\beta + 1) = \alpha\beta + (\alpha + \beta) + 1$$

 $= 3 + 7 + 1$
 $= 11$

ii)
$$\alpha + \beta = 3 + \sqrt{11} + 3 - \sqrt{11}$$
$$\alpha + \beta = 6$$
$$\alpha\beta = (3 + \sqrt{11})(3 - \sqrt{11})$$
$$\alpha\beta = 9 - 3\sqrt{11} + 3\sqrt{11} - 11$$
$$\alpha\beta = 9 - 11$$
$$\alpha\beta = -2$$

$$x^{2} - (\alpha + \beta)x + \alpha\beta = 0$$

 $x^{2} - 6x - 2 = 0$ or $y = a(x^{2} - 6x - 2)$

iii) a)
$$\alpha + \beta = \alpha\beta$$

$$\alpha + \beta = \alpha\beta$$

$$\frac{2g+1}{3} = \frac{3g-5}{3}$$

$$2g+1 = 3g-5$$

$$g = 6$$

$$3g-5 = 3$$

$$3g-5 = 3$$

$$3g = 8$$

$$g = \frac{8}{3}$$

iv)
$$3x^2 - x + 20 = A(x-1)^2 + B(x+2) + C$$

= $A(x^2 - 2x + 1) + Bx + 2B + C$
= $Ax^2 + (B - 2A)x + (A + 2B + C)$

By comparing coefficients of x.

$$A=3$$
 $B-2A=-1$ $A+2B+C=20$ $B-6=-1$ $3+10+C=20$ $B=5$ $C=7$

$$3x^{2} - x + 20 = 3(x-1)^{2} + 5(x+2) + 7$$

MATHEMATICS (2 UNIT) MORIAH

 $PA^2 = (x+4)^2 + (y-3)^2$ 4i) a) $PB^2 = (x-5)^2 + (y-3)^2$

CRITERIA	MA	RK
Correct expressions	j	Į.

4i) b)

Squaring both sides of the expression and obtaining a factor of 4 on the right hand side	1 out of 2
OR An expression of the form $(x-a)^2 + (y-b)^2 = r^2$	1 out of 2
Correct expression of the circle	2

PA=2PB $\sqrt{(x+4)^2 + (y-3)^2} = 2\sqrt{(x-5)^2 + (y-3)^2}$ $(x+4)^2 + (y-3)^2 = 4\{(x-5)^2 + (y-3)^2\}$ $x^{2} + 8x + 16 + y^{2} - 6y + 9 = 4(x^{2} - 10x + 25 + y^{2} - 6y + 9)$ $x^2 - 16x + y^2 - 6y = -37$ $x^2 - 16x + 64 + y^2 - 6y + 9 = -37 + 64 + 9$ $(x-8)^2 + (y-3)^2 = 36$

Correct centre consistent with expression found in 4 i) b)	1 out of 2
Correct radius consistent with expression found in 4 i) b)	1 out of 2

This is a circle as it is of the form $(x-h)^2 + (y-k)^2 = r^2$

4i) c) center = (8,3)radius

MATHEMATICS (2 UNIT) MORIAH

 $(x+2)^2 = -2\left(y-\frac{5}{2}\right)$

CRITERIA		MARK
$(x+2)^2 = -2\left(y - \frac{5}{2}\right)$		3
$a=\frac{1}{2}$	1 mark each	1 out of 2
$Vertex = \left(-2, 2\frac{1}{2}\right)$	1 mark each	1 out of 2

 $y^2 - 4y + 4 = 4 - 8x - 20$ 4 iii) $(y-2)^2 = -8x-16$

 $(y-2)^2 = -8(x+2)$

Vertex = (-2,2)

Focus = (-4,2)Directrix is x = 0 Correct Vertex Correct Focus or Focus consistent with Vertex and graph and the value of a Correct Directrix or Directrix consistent with Vertex and graph and the value of a

4 iv)

Parabola correct position and orientation	2
Parabola with axis parallel to the x axis with vertex consistent with answer in 4 iii)	1
Parabola in the correct direction with vertex consistent with answer in 4 iii)	
,	1

Question 5

At
$$(1,10)$$
: $10 = a(1)^2 +b(1)$
At $= 10$

b) maximum height at vertex

.. ball reaches maximum height of 11.25 m when t= 3 (1.5) sec

(c)
$$\frac{dy}{dt} = -10t + 15$$

At B(3,0):
$$\frac{dy}{dt} = -10(3)+15$$

$$= -30+15$$

$$= -15$$

the velocity of the belt is -15 m/s.