MORIAH COLLEGE

Year 12

MATHEMATICS ADVANCED

ASSESSMENT TASK 3 - 2008

Time Allowed:

1 hour. 30 minutes, plus 5 mins

reading time

Examiners:

VS, DL, BO, GO

Date:

12th June, 2008

Time:

9:00 am - 10:35 am

Instructions:

- · Show all necessary working
- Marks may be deducted for careless or badly arranged work
- Start each question in a new booklet or on a new page
- ALL QUESTIONS ARE OF EQUAL VALUE
- Approved calculators may be used

Question 1 (12 marks)

a) Convert 135° to radians in exact form

b) In the diagram below, PQ is the arc of a circle with centre O.

The radius OP = 3cm and the angle POQ is $\frac{5\pi}{6}$ radians.

Find the exact length of the arc PQ.

c) Find in simplest form the exact value of:

$$\int_{0}^{\ln 7} e^{-x} dx$$

d) Differentiate the following functions:

i)
$$y = 2e^{-x}$$
 2
ii) $y = \ln(x^2 + 1)$ 2
iii) $(e^{2x} + 5)^3$ 2
iv) $x^3 \cos x$ 2

1

Question 2 (12 marks)

a) Differentiate

- i) $e^{\sin x}$ 2
- ii) $x\ln(x+1)$ 2
- $\frac{\sin(ax+1)}{\cos(ax+1)}$

b) Evaluate this indefinite integrals

- i) $\int \frac{6}{\csc 2x} dx$ 2
- ii) $\int \sec^2 6x \ dx$ 1
- c) Using a substitution of $u = e^x$, solve $e^{2x} e^x 1 = 0$ to show that the only possible solution is approximately 0.481.

Question 3 (12 marks)

a) Sketch $y = 5\sin 4x$ for $0 \le x \le \pi$

- 3
- b) The diagram shows the graphs of the functions $y = \cos x$ and $y = \sin 2x$ between x = 0 and $x = \frac{\pi}{2}$.
 - i) Show that the two graphs intersect at $x = \frac{\pi}{6}$ and $x = \frac{\pi}{2}$.
 - i) Hence, calculate the area bounded by the curves and the x-axis 3

c) A table top is in the shape of a circle with a small segment removed as shown. The circle has centre O and radius 0.6 metres. The length of the straight edge AB is also 0.6 metres.

- i) Explain why $\angle AOB = \frac{\pi}{3}$ radians
- ii) Find the area of the table top to 2 decimal places

3

Question 4 (12 marks)

- a) Show by using $y = a^x$ that $\int a^x dx = \frac{a^x}{\ln a} + C$
- b) Consider the function $y = 2^x$

i)	Co	py and c	omplete	the table	below in	to your w	ork book	let.	1
		х	-1	0	1	2	3		
		2 ^x				·			

ii) Using Simpson's rule with these five function values, find an estimate for the area shaded in the diagram below.

- iii) Find the exact value of $\int_{-1}^{3} 2^{x} dx$ and calculate your percentage error from using Simpson's rule in part (ii) to 2 decimal places
- c) Evaluate:

i)
$$\lim_{x \to 0} \frac{\sin 4x}{x}$$
 1

ii) Find the diameter of the moon to the nearest kilometre if the distance 3 of its centre is 382 500 km from the earth. The angle subtended by the moon at the earth is 0°30'.

Question 5 (12 marks)

- a)
 i) Draw a neat sketch of the curve $y = e^{-x} + 1$
 - ii) The region contained by the curve at the ordinates x = 0 and x = 2 is rotated about the x-axis. Find the volume formed correct to 2 d.p.
- b) A baker cuts a sector out of a pastry circle with radius 5cm and with an angle of $\frac{2\pi}{3}$ subtended at the centre. This sector is then curved around to form a waffle cone.
 - i) Find the external surface area of the cone 2
 - ii) Show that the radius of the open circular base of the cone is $\frac{5}{3}$ cm. 2
 - iii) By finding the exact height of the cone, find the capacity of the cone in exact form. (NB: Volume of a cone = $\frac{1}{3}A \times h$)

Solutions to Task 3, Mathematics Advanced, 2008

Question 1 (12 marks)	Mark Allocation
a) $135^{\circ} \times \frac{\pi}{180} = \frac{3\pi}{4}$	1 mark
b) $l = r\theta = 3 \times \frac{5\pi}{6} = \frac{5\pi}{2}$ cm	1 mark
c) $\int_{0}^{\ln 7} e^{-x} dx = \left[-e^{-x} \right]_{0}^{\ln 7}$ $= \left(-e^{-\ln 7} + e^{0} \right)$ $= 1 - e^{\ln(7^{-1})}$	1 mark (integration) 1 mark (simplified answer)
$=1 - \frac{1}{7} = \frac{6}{7}$ d)	
i) $y = 2e^{-x}$ $y' = -2e^{-x}$	2 marks (minus 1 for any errors)
$y = \ln(x^2 + 1)$ ii) $y' = \frac{2x}{x^2 + 1}$	2 marks (minus 1 for any errors)
$y = (e^{2x} + 5)^{3}$ iii)	2 marks (chain rule) (minus 1 for any errors)
$y = x^{3} \cos x$ iv) let $\frac{dy}{dx} = 3x^{2} \cos x - x^{3} \sin x$ $= x^{2} (3 \cos x - x \sin x)$	2 marks (chain rule) (minus 1 for any errors)

Question 2 (12 marks)	Mark Allocation
a) Differentiate	
i) Let $y = e^{\sin x}$ $y' = \cos x \times e^{\sin x}$	2 marks (minus 1 for any errors)
$y = x \ln (x+1)$	1 mark (differentiation of u and v) 1 mark (correct use of prod. rule)
ii) Let $\frac{dy}{dx} = \ln(x+1) + \frac{x}{x+1}$ $y = \frac{\sin(ax+1)}{\cos(ax+1)}$ iii) = $\tan(ax+1)$	1 mark (conversion to tan and differentiating / or quotient rule splits)
$y' = \sec^2(ax+1) \times a$ $= a \sec^2(ax+1)$	1 mark (constant multiplier) [no deduction for answer left as the reciprocal of cos function]
b) Evaluate this indefinite integrals	
$I = \int \frac{6}{\csc 2x} dx$	1 mark (conversion to sin and integration)
i) $= \int 6\sin 2x dx$ $= 6 \times -\frac{1}{2}\cos 2x + C$	1 mark (negative sign)
$= -3\cos 2x + C$	[minus 1 for forgetting + C on this question]
$I = \int \sec^2 6x dx$ ii) $= \frac{1}{6} \tan 6x + C$	1 mark [no deduction for forgetting + C on this question]
c) Using a substitution of $u = e^x$, solve	
$e^{2x} - e^x - 1 = 0$	
$u^2 - u - 1 = 0$	1 mark (quadratic form answer)
$u = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-1)}}{2(1)}$ $= \frac{1 \pm \sqrt{5}}{2}$	1 mark (resubstitution of u as e^x)
Hence: $u = e^x = \frac{1 + \sqrt{5}}{2}$ $e^x = \frac{1 - \sqrt{5}}{2}$	1 mark (final answer, with discounting of second soln)
$e^x = 1.618$ or $e^x = -0.618$	[minus 1 for not discounting second soln]
$\ln\left(e^{x}\right) = \ln\left(1.618\right) \qquad \text{no soln}$	
x = 0.481	

Question 3 (12 marks)	Mark Allocation
a) Sketch $y = 5\sin 4x$ for $0 \le x \le \pi$	
$Period = \frac{2\pi}{4} = \frac{\pi}{2}$	
Amplitude = 5 units	
γ 5 1 4 1 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 mark (for correct period) 1 mark (for correct amplitude) 1 mark (for correct curve)
b) i) By substituting $x = \frac{\pi}{6}$, $y_1 = \cos x = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$ $y_2 = \sin 2x = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$ therefore is a soln.	1 mark (correct substitution)
By substituting $x = \frac{\pi}{2}$, $y_1 = \cos x = \cos \frac{\pi}{2} = 0$ $y_2 = \sin 2x = \sin \pi = 0$ therefore is a soln.	1 mark (correct substitution)

Question 3 continued	
ii) Area =	
$\frac{\pi}{6}$ $\frac{\pi}{2}$	Tags
$= \int_{0}^{\frac{\pi}{6}} \sin 2x dx + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos x dx$	1 monte (compact got up of
0 <u>x</u>	1 mark (correct set up of integral)
	integral)
$= \left[-\frac{1}{2}\cos 2x \right]_0^{\frac{\pi}{6}} + \left[\sin x \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}$	
$= -\frac{1}{2} \left(\cos \frac{\pi}{3} - \cos 0 \right) + \left(\sin \frac{\pi}{2} - \sin \frac{\pi}{6} \right)$	1 mark (correct integration)
$= -\frac{1}{2} \left(\frac{1}{2} - 1 \right) + \left(1 - \frac{1}{2} \right)$	
$=\frac{1}{4}+\frac{1}{2}$	1 mark (final answer)
$=\frac{3}{4}$ sq units	
c)	
i) Triangle is equilateral, all sides 0.6m	1 mark
ii) Area of segment =	
$=\frac{1}{2}r^2(\theta-\sin\theta)$	
$=\frac{1}{2}(0.6)^2\left(\frac{\pi}{3}-\sin\frac{\pi}{3}\right)$	
= 0.0326	1 mark (area of minor segment)
Hence area of table = circle - segment =	
$=\pi(0.6)^2-0.0326$	
· · ·	
=1.098	1 12 1 21 - 12
=1.10 sq units (2dp)	1 mark (set up with subtraction from whole circle area)
	1 mark (final answer to 2dp)
	[minus ½ mark for incorrect rounding]

Question 4 (12 marks)						Mark Allocation	
$y = a^x$							1 mark (manipulation of y)
a) Given $\ln y = \ln a^x$ $\ln y = x \ln a$							
							1 mark (clearly shown)
у	$=e^{x\ln a}$		_				
$\int a^x dx$	$= \int e^{x \ln a} a$	$dx = \frac{e^x}{1}$	ln <i>a</i> —+(7			[Note award marks if shown by differentiating and
then	,						working backwards, but every
		$=\frac{a}{\ln a}$	$\frac{x}{a} + C$				step must be shown clearly]
b)							
i)				г		ı	
	x	-1	0	1	2	3	1 mark (no errors)
	2 ^x	1/2	1	2	4	8	
	Factor	1	4	2	4	1	
	F*2 ^x	1/2	4	4	16	8	1 (4 (1 522 5)
	Sum:					321/2	1 mark (total sum of 32.5)
ii) Are	$a \approx \frac{1}{3} \times 3$	$2\frac{1}{2} \approx 1$	0 ⁵ ≈	10.83	sq.un	nits	1. (
 /,	3	2	6		•		1 mark (in exact form)
3,	Γ2	<i>х</i> 7 ³	(23	2-	۱)		
]2'	$dx = \left[\frac{2}{\ln x}\right]$	1 mark (integration)					
iii) -	1)						
,	$\left \frac{8-\frac{1}{2}}{\ln 2}\right = \left \frac{8-\frac{1}{2}}{\ln 2}\right $	15	-)=10	0.8200	21		1 mark (exact)
	ln 2						
							1 mark (% error to 2dp)
Percentage error =							
(10.83-	-10.8202	[Do not subtract a mark for rounding error here]					
$\underbrace{\left(10.83 - 10.82021\right)}_{10.82021} \times 100 = 0.12\%$							Tounum gerror nerej
10.82021 c) Evaluate:							
$\sin 4x \qquad \sin 4x$						1 mark	
i) $\lim_{x \to 0} \frac{\sin x}{x} = 4 \lim_{x \to 0} \frac{\sin x}{4x} = 4$						1 must	

Question 5 (12 marks)	Mark Allocation		
a)			
i) Draw a neat sketch of the curve	1 mark (correct negative exp shape)		
$y = e^{-x} + 1$	I mark (shift vertical up one unit)		
$= \pi \int_{0}^{2} y^{2} dx$ $= \pi \int_{0}^{2} \left(e^{-x} + 1\right)^{2} dx$	1 mark (correct squaring of function)		
ii) $Vol = \frac{\pi}{0} \int_{0}^{2} (e^{-2x} + 2e^{-x} + 1) dx$	1 mark (correct integration)		
$= \pi \left[-\frac{e^{-2x}}{2} - 2e^{-x} + x \right]_0^2$ $= \pi \left[-\frac{1}{2e^{2x}} - \frac{2}{e^x} + x \right]_0^2$	1 mark (correct final answer)		
=13.26 cubic units			
b)			
i) $A_{sector} = SA_{cone} = \frac{1}{2}r^{2}\theta$ $= \frac{1}{2}(5)^{2} \times \frac{2\pi}{3}$ $= \frac{25\pi}{3} \text{ sq units}$	1 mark (matching area of sector to area of cone) 1 mark (correct answer)		
ii) Circumference of the base of the cone will be the same as the arc length of the sector cut out, hence $r_{sector}\theta = 2\pi r_{cone}$ $5 \times \frac{2\pi}{3} = 2\pi \times r_{cone}$ $r_{cone} = \frac{5}{3}$	1 mark (statement explaining first part or simply equation as shown) 1 mark (substitution clearly shown)		
iii) By Pythagoras, using slant height of the cone as the radius of the original sector			
$h_{cone} = \sqrt{5^2 - \left(\frac{5}{3}\right)^2}$	1 mark (slant height as 5)		
$=10\sqrt{2}$ units	1 mark (pythag and height of cone)		
Then volume:			

$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \times \left(\frac{5}{3}\right)^2 \times 10\sqrt{2}$	1 mark (final exact answer)
$= \frac{250\pi\sqrt{3}}{81}$ cubic units	÷