Estimation of the roots of polynomial equation Solutions Main Menu

- 93 One approximate solution of the equation $f(x) = 4x^3 15x^2 + 22x 12$ is x = 1.3. What is another approximation to this solution using one application of Newton's method?
 - (A) x = 1.2884
 - (B) x = 1.2885
 - (C) x = 1.2886
 - (D) x = 1.2887
- 94 The polynomial equation $f(x) = x^3 + x 1$ has a root near x = 0.5. What is an approximation to the root using one application of Newton's method?
 - (A) x = 0.7141
 - (B) x = 0.7142
 - (C) x = 0.7143
 - (D) x = 0.7144
- 95 The polynomial $P(x) = 5x^3 + 3x^2 + 1$ has one real root in the interval -1 < x < 0.
 - Let x = -0.25 be a first approximation to the root.
 - Which of the following statements is correct?
 - (A) x = 1.72 is a better approximation using Newton's method.
 - (B) Maximum stationary point is between x = -0.25 and the actual root.
 - (C) x = 0.58 is a better approximation using Newton's method.
 - (D) Maximum stationary point is between x = -0.25 and the actual root.
- 96 The function $f(x) = \sin x \frac{2x}{3}$ has a real root close to x = 1.5.
 - Let x = 1.5 be a first approximation to the root.
 - What is the second approximation to the root using Newton's method?
 - (A) 1.495
 - (B) 1.496
 - (C) 1.503
 - (Ď) 1.504

- 97 One approximate solution of the equation $\cos x \frac{x}{3} = 0$ is x = 1.1. What is another approximation to this solution using one application of Newton's method?
 - (A) x = 1.052
 - (B) x = 1.171
 - (C) x = 1.198
 - (D) x = 2.896
- 98 Let x = 3.4 be a first approximation to the root of the equation $\log_e x + x^2 4x + 1 = 0$. What is a better approximation to the root using Newton's method?
 - (A) 3.3406
 - (B) 3.3712
 - (C) 3.3891
 - (D) 3.5042
- 99 Let x = 1 be a first approximation to the root of the equation $\cos x = \log_e x$. What is a better approximation to the root using Newton's method?
 - (A) 1.28
 - (B) 1.29
 - (C) 130
 - (D) 1.31
- 100 One approximate solution of the equation $\frac{\pi}{4} + \tan^{-1} x x^2 = 0$ is x = 1. What is another approximation to this solution using one application of Newton's method?
 - (A) x = 1.3805
 - (B) x = 1.3914
 - (C) x = 1.4125
 - (D) x = 1.4156
- 101 Taking $\theta = 1.7$ radians as an approximation for the solution to the equation $f(\theta) = 2\sin\theta \theta$. What is another approximation to this solution using one application of Newton's method?
 - (A) $\theta = 1.73$
 - (B) $\theta = 1.83$
 - (C) $\theta = 1.93$
 - (D) $\theta = 2.03$

Estimation of the roots of a polynomial equation Main Menu				
	Solution	Criteria		
93	$f(x) = 4x^3 - 15x^2 + 22x - 12 \text{ and } f'(x) = 12x^2 - 30x + 22$ $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ $= 1.3 - \frac{0.038}{3.28}$ $= 1.288414634 \approx 1.2884$	1 Mark: A		
94	$f(x) = x^{3} + x - 1 \text{ and } f'(x) = 3x^{2} + 1$ $x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$ $= 0.5 - \frac{-0.375}{1.75}$ $= 0.71428571 \approx 0.7143$	1 Mark: C		
95	Newton's method is calculating the x-intercept from the tangent to the curve at the approximation $x = -0.25$. However there is a maximum stationary point at $(-\frac{2}{5}, \frac{29}{25})$ between $x = -0.25$ and the actual root. This results in the second approximation $(x = 1.72)$ further from the actual root.	1 Mark: B		
96	$f(x) = \sin x - \frac{2x}{3}$ $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ $= 1.5 - \frac{\sin 1.5 - \frac{2}{3} \times 1.5}{\cos 1.5 - \frac{2}{3}}$ $= 1.49579 \approx 1.496$	1 Mark: B		
97	$f(x) = \cos x - \frac{x}{3}$ $f'(x) = -\sin x - \frac{1}{3}$ $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ $= 1.1 - \frac{\cos 1.1 - \frac{1.1}{3}}{-\sin 1.1 - \frac{1}{3}}$ $= 1.170989437$ $= 1.171$	1 Mark: B		

	98	$f'(x) = \frac{1}{x} + 2x - 4$ $f'(3.4) = \frac{1}{3.4} + 2 \times 3.4 - 4$ $= \frac{263}{85} \text{ (or } 3.0941176)$ $f(3.4) = \log_e 3.4 + 3.4^2 - 4 \times 3.4 + 1$ $= \log_e 3.4 - \frac{26}{25} \text{ (or } 0.18377543)$ $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ $= 3.4 - \frac{\log_e 3.4 - \frac{26}{25}}{\frac{263}{85}}$ $= 3.340604899 \approx 3.3406$	1 Mark: A
	99	$f(x) = \cos x - \log_e x \text{ and } f'(x) = -\sin x - \frac{1}{x}$ $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ $= 1 - \frac{\cos 1 - \log_e 1}{-\sin 1 - 1}$ $= 1.293407993 \approx 1.29$	1 Mark: B
]	100	$f'(x) = \frac{1}{1+x^2} - 2x$ $f'(1) = \frac{1}{1+1} - 2$ $= -1.5$ $f(1) = \frac{\pi}{2} - 1$ $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ $= 1 - \frac{\frac{\pi}{2} - 1}{-1.5} = 1.3805$	1 Mark: A
	101	$f(\theta) = 2\sin\theta - \theta$ $f(1.7) = 2\sin 1.7 - 1.7$ ≈ 0.2833296209 $f'(\theta) = 2\cos\theta - 1$ $f'(1.7) = 2\cos 1.7 - 1$ ≈ -1.257688989 $\theta_1 = \theta_0 - \frac{f(\theta_0)}{f'(\theta_0)}$ $= 1.7 - \frac{2\sin(1.7) - 1.7}{2\cos(1.7) - 1}$ ≈ 1.925277969 ≈ 1.93	1 Mark: C