Mechanics

Solutions

Main Menu

70 A particle of mass m falls from rest under gravity and the resistance to its motion is mkv^2 , where v is its speed and k is a positive constant. Which of the following is the correct expression for square of the velocity where x is the distance fallen?

(A)
$$v^2 = \frac{g}{k} \left(1 - e^{-2kx} \right)$$

(B)
$$v^2 = \frac{g}{k} (1 + e^{-2kx})$$

(C)
$$v^2 = \frac{g}{k} (1 - e^{2kx})$$

(D)
$$v^2 = \frac{g}{k} \left(1 + e^{2kx} \right)$$

A rock is projected vertically upwards from ground level. Assume air resistance is $k\nu$, where ν is the velocity of the rock and k is a positive constant. The rock falls back to ground level under the influence of g, the acceleration due to gravity. Consider the rock's motion starting from maximum height. Let y be the displacement and t be the time elapsed after the rock has reached maximum height. Assume the rock has a unit mass. Which of the following is the correct expression for velocity?

(A)
$$v = \frac{g}{k}(e^{kt} - 1)$$

(B)
$$v = \frac{g}{k}(e^{kt} + 1)$$

(C)
$$v = \frac{k}{g}(e^{kt} - 1)$$

(D)
$$v = \frac{k}{g}(e^{kt} + 1)$$

72 A particle of mass m is moving in a straight line under the action of a force.

$$F = \frac{m}{x^3}(6-10x)$$

What of the following is an expression for its velocity in any position, if the particle starts from rest at x = 1?

31

(A)
$$v = \pm \frac{1}{x} \sqrt{(-3 + 10x - 7x^2)}$$

(B)
$$v = \pm x\sqrt{(-3+10x-7x^2)}$$

(C)
$$v = \pm \frac{1}{x} \sqrt{2(-3+10x-7x^2)}$$

(D)
$$v = \pm x\sqrt{2(-3+10x-7x^2)}$$

A particle of mass m is projected vertically upwards with an initial velocity of $u \text{ ms}^{-1}$ in a medium in which the resistance to the motion is proportional to the square of the velocity $v \text{ ms}^{-1}$ of the particle or mkv^2 . Let x be the displacement in metres of the particle above the point of projection, O, so that the equation of motion is $\ddot{x} = -(g + kv^2)$ where $g \text{ ms}^{-2}$ is the acceleration due to gravity. Assume k = 10 and the acceleration due to gravity is 10 ms^{-2} .

Which of the following gives the correct expression for the time taken?

(A)
$$t = \frac{1}{10} \left(\tan^{-1} u - \tan^{-1} v \right)$$

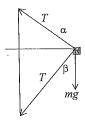
(B)
$$t = \frac{1}{10} (\tan^{-1} v - \tan^{-1} u)$$

(C)
$$t = \frac{1}{10} \left(\tan^{-1} u + \tan^{-1} v \right)$$

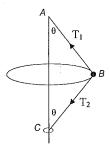
(D)
$$t = \frac{1}{10} (\tan^{-1} v + \tan^{-1} u)$$

- A conical pendulum consists of a body P of mass m kg and a string of length l metres. Point A is fixed and the body P rotates in a horizontal circle of radius r and centre O at a constant angular velocity of ω radians per second. OA is vertical and has a length of h metres. The angle OAP is θ radians. The body, P, is subject to a gravitational force of mg newtons. The tension in the string is T newtons. Which of the following gives the correct resolution of forces on P in the horizontal and vertical directions?
 - (A) $T \sin \theta mg = 0$ and $T \cos \theta = mr\omega^2$
 - (B) $T \sin \theta + mg = 0$ and $T \cos \theta = mr\omega^2$
 - (C) $T\cos\theta mg = 0$ and $T\sin\theta = mr\omega^2$
 - (D) $T\cos\theta + mg = 0$ and $T\sin\theta = mr\omega^2$

75 Two light inextensible strings are attached to a particle of mass m. The particle describes a horizontal circle with constant angular velocity ω . Which of the following gives the correct resolution of forces in the horizontal and vertical directions?



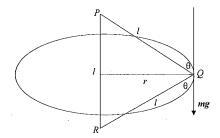
- (A) $T \sin \alpha T \sin \beta = m\omega^2 r$ and $T \cos \alpha T \cos \beta = mg$
- (B) $T \sin \alpha + T \cos \beta = m\omega^2 r$ and $T \sin \alpha T \cos \beta = mg$
- (C) $T \sin \alpha + T \sin \beta = m\omega^2 r$ and $T \cos \alpha T \cos \beta = mg$
- (D) $T \sin \alpha T \cos \beta = m\omega^2 r$ and $T \sin \alpha T \cos \beta = mg$
- A body of mass m kg is attached by two light rods AB and BC. Both rods are l metres in length. Rod AB is hinged at point A and makes an angle θ with the vertical shaft. Rod BC is attached to a ring that can slide freely along the vertical shaft.



What are the tensions in the rods?

- (A) $T_1 = \frac{1}{2} \left(mg \sec \theta + ml\omega^2 \right)$ and $T_2 = \frac{1}{2} \left(ml\omega^2 mg \sec \theta \right)$
- (B) $T_1 = \frac{1}{2} \left(mg \sin \theta + ml\omega^2 \right)$ and $T_2 = \frac{1}{2} \left(ml\omega^2 mg \sin \theta \right)$
- (C) $T_1 = \frac{1}{2} \left(mg \sec \theta ml\omega^2 \right)$ and $T_2 = \frac{1}{2} \left(ml\omega^2 + mg \sec \theta \right)$
- (D) $T_1 = \frac{1}{2} \left(mg \sin \theta ml\omega^2 \right)$ and $T_2 = \frac{1}{2} \left(ml\omega^2 + mg \sin \theta \right)$

77 Two light inextensible strings PQ and QR each of length l are attached to a particle of mass m at Q. The other ends P and R are fixed to two points in a vertical line such that P is a distance l above R. The particle describes a horizontal circle with constant angular velocity ω .



What is the tension in the strings?

(A)
$$T_1 = \frac{m}{2}(lw^2 + 2g)$$
 and $T_2 = \frac{m}{2}(lw^2 - g)$

(B)
$$T_1 = \frac{m}{2}(lw^2 - 2g)$$
 and $T_2 = \frac{m}{2}(lw^2 + g)$

(C)
$$T_1 = m(lw^2 - 2g)$$
 and $T_2 = m(lw^2 + g)$

(D)
$$T_1 = m(lw^2 + 2g)$$
 and $T_2 = m(lw^2 - g)$

- What is the angle at which a road must be banked so that a car may round a curve with a radius of 200 metres at 100 km/h without sliding? Assume that the road is smooth.
 - (A) 21.49°

(B) 22.49°

(C) 23.49°

- (D) 24.49°
- 79 A conical pendulum consists of a body P of mass m kg and a string of length l metres. A is fixed and the body P rotates in a horizontal circle of radius r and centre O at a constant angular velocity of ω radians per second. OA is vertical and OA = h metres. The angle OAP is α . The body, P, is subject to a gravitational force of mg newtons. The tension in the string is T newtons. What is the angular velocity?
 - (A) $\sqrt{\frac{g}{h}}$
 - (B) $\sqrt{\frac{h}{g}}$
 - (C) $2\pi\sqrt{\frac{g}{h}}$
 - (D) $2\pi\sqrt{\frac{h}{g}}$

Med	Iechanics <u>M</u>	
	Solution	Criteria
70	$\dot{v} = g - kv^{2}$ $\frac{1}{2} \frac{dv^{2}}{dx} = g - kv^{2}$ $2 dx = \frac{dv^{2}}{g - kv^{2}}$ $-2k dx = \frac{-k dv^{2}}{g - kv^{2}}$ $-2kx + c = \log_{e} g - kv^{2} $ Initial conditions $t = 0$, $v = 0$ and $x = 0$ or $c = \log_{e} g$ $-2kx = \log_{e} \left 1 - \frac{k}{g} v^{2} \right $ $v^{2} = \frac{g}{k} \left(1 - e^{-2kx} \right)$	1 Mark: A
71	$\ddot{y} = kv - g$ $\frac{dv}{dt} = kv - g$ $\frac{dt}{dv} = \frac{1}{kv - g}$ $\int \frac{dt}{dv} dv = \int \frac{1}{kv - g} dv$ $t = \frac{1}{k} \log_e(kv - g) + c$ Initial conditions $t = 0$ and $v = 0$ $0 = \frac{1}{k} \log_e(-g) + c \text{ or } c = -\frac{1}{k} \log_e g$ $t = \frac{1}{k} \log_e(kv - g) - \frac{1}{k} \log_e g$ $= \frac{1}{k} \log_e(kv - g)$ $kt = \log_e(\frac{kv - g}{g})$ $kt = \log_e(\frac{kv - g}{g})$ $e^{kt} = \frac{kv - g}{g}$ $= \frac{kv}{g} - 1$ $v = \frac{g}{k}(e^{kt} + 1)$	1 Mark: B

$F = \frac{m}{x^3} (6 - 10x)$		
$ma = \frac{m}{x^3}(6-10x)$		
$v\frac{dv}{dx} = \frac{6}{x^3} - \frac{10}{x^2}$		
$\int v dv = \int \left(\frac{6}{r^3} - \frac{10}{r^2}\right) dx$		
$\frac{1}{2}v^2 = (\frac{6x^{-2}}{-2} - \frac{10x^{-1}}{-1}) + c$	·	
$\frac{1}{2}v^2 = (\frac{-3}{x^2} + \frac{10}{x}) + c$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 M	/lark: C
$\frac{1}{2}0^2 = (\frac{-3}{1^2} + \frac{10}{1}) + c$		
c = -7		İ
$\frac{1}{2}v^2 = (\frac{-3}{x^2} + \frac{10}{x}) - 7$		
$v^2 = (\frac{-6}{x^2} + \frac{20}{x}) - 14$		
$=\frac{-6+20x-14x^2}{x^2}$		
$v = \pm \frac{1}{x} \sqrt{2(-3 + 10x - 7x^2)}$		
$\ddot{x} = -\left(g + kv^2\right)$		
$\ddot{x} = -\left(10 + 10v^2\right)$		
$\frac{dv}{dt} = -10\left(1 + v^2\right)$		
$\begin{array}{ c c } \hline 73 & \frac{dv}{1+v^2} = -10dt \end{array}$	1 N	/lark: A
$\tan^{-1} v = -10t + c$		
When $t = 0$, $v = u$ and $c = \tan^{-1} u$		
$\tan^{-1} v = -10t + \tan^{-1} u \text{ or } t = \frac{1}{10} \left(\tan^{-1} u - \tan^{-1} v \right)$)	
Body moving in a horizontal circle.	1 1	Annles C
$T \cos \theta - mg = 0 \text{ and } T \sin \theta = mr\omega^2$. 1 P	Mark: C
The horizontal component is $mr\omega^2$.		
$T\sin\alpha + T\sin\beta = m\omega^2 r$	1 1	Mark: C
The vertical component is zero	. 1 P	, min, O
$T\cos\alpha - T\cos\beta = mg$	v	

	Resolving the forces vertically	
	$T_1 \cos \theta - T_2 \cos \theta - mg = 0 \tag{1}$	
	Resolving the forces horizontally	
	$T_{1}\sin\theta + T_{2}\sin\theta = mr\omega^{2}$	
	Now $\sin \theta = \frac{r}{l}$ or $r = l \sin \theta$	
	$T_1 \sin \theta + T_2 \sin \theta = ml \sin \theta \omega^2 \qquad (2)$	
76	Simplifying Eqn (1)	1 Mark: A
	$T_1 - T_2 = mg \sec \theta \tag{3}$	
	Simplifying Eqn (2)	
	$T_1 + T_2 = ml\omega^2 \tag{4}$	
	Eqn (3) + Eqn (4) Eqn (3)	
	$2T_1 = mg \sec \theta + ml\omega^2 \qquad 2T_2 = ml\omega^2 - mg \sec \theta$	
	1	
	$T_1 = \frac{1}{2} \left(mg \sec \theta + ml\omega^2 \right)$ $T_2 = \frac{1}{2} \left(ml\omega^2 - mg \sec \theta \right)$	
	Horizontal components	
	$T_1 \sin \theta + T_2 \sin \theta = mrw^2$	
	T_1	,
	Also $\sin \theta = \frac{r}{l}$	
	$T^{r} + T^{r} = 0$	
	$T_1 \frac{r}{l} + T_2 \frac{r}{l} = mrw^2$	
	$T_1 + T_2 = mlw^2 (1)$	
	Vertical components T_2	
	$T_1 \cos \theta = T_2 \cos \theta + mg$	
	1/21 1	
	Also $\cos \theta = \frac{\frac{1}{2}l}{l} = \frac{1}{2}$	
77		1 Mark: A
' '	$T_1 \frac{1}{2} - T_2 \frac{1}{2} = mg \text{ or } T_1 - T_2 = 2mg $ (2)	·
	Equations (1) + (2) $2T_1 = mlw^2 + 2mg$	
	$T_1 = \frac{m}{2} \left(l w^2 + 2g \right)$	
	2 (** + 28)	
	Substitute $\frac{m}{2}(lw^2 + 2g)$ for T_1 into equation (2)	-
	$\frac{m}{2}(lw^2 + 2g) - T_2 = 2mg$	
	$T_2 = \frac{m}{2}lw^2 + mg - 2mg = \frac{m}{2}(lw^2 - g)$	
	Therefore $T_1 = \frac{m}{2}(lw^2 + 2g)$ and $T_2 = \frac{m}{2}(lw^2 - g)$	

