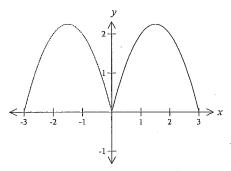
Volumes

Solutions

Main Menu

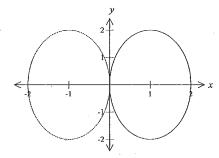
- 61 The parabola $y = x^3$ is rotated about the y axis $\{x : 0 \le x \le 2\}$ to form a solid. What is the volume of this solid using the method of slicing?
 - (A) $\frac{2\pi}{5}$ cubic units
 - (B) $\frac{3\pi}{5}$ cubic units
 - (C) $\frac{93\pi}{5}$ cubic units
 - (D) $\frac{96\pi}{5}$ cubic units
- 62 The area between the curve $y = 3x x^2$, the x-axis, x = 0 and x = 3, is rotated about the y-axis to form a solid.



What is the volume of this solid using the method of slicing?

- (A) $\frac{9\pi}{4}$ cubic units
- (B) $\frac{9\pi}{2}$ cubic units
- (C) $\frac{27\pi}{4}$ cubic units
- (D) $\frac{27\pi}{2}$ cubic units

63 The region enclosed by the ellipse $(x-1)^2 + \frac{y^2}{4} = 1$ is rotated about the y axis to form a solid.



What is the correct expression for volume of this solid using the method of slicing?

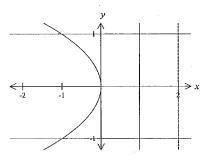
(A)
$$V = \int_{-2}^{2} \pi \sqrt{1 - y^2} \, dy$$

(B)
$$V = \int_{2}^{2} 2\pi \sqrt{1 - y^2} \, dy$$

(C)
$$V = \int_{-2}^{2} \pi \sqrt{4 - y^2} \, dy$$

(D)
$$V = \int_{-2}^{2} 2\pi \sqrt{4 - y^2} dy$$

64 The region is bounded by the lines x = 1, y = 1, y = -1 and by the curve $x = -y^2$. The region is rotated through 360° about the line x = 2 to form a solid. What is the correct expression for volume of this solid?



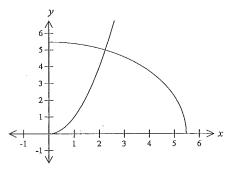
(A)
$$V = \int_{-1}^{1} \pi (y^4 - 4y^2 + 3) dy$$

(B)
$$V = \int_{-1}^{1} \pi (y^4 + 4y^2 + 3) dy$$

(C)
$$V = \int_{-1}^{1} \pi (y^4 - 4y^2 + 4) dy$$

(D)
$$V = \int_{-1}^{1} \pi (y^4 + 4y^2 + 4) dy$$

- 65 What is the volume of the solid formed when the region bounded by the curves $y = 2x^3$ and $y = 2\sqrt{x}$ is rotated about the x-axis? Use the method of slicing.
 - (A) $\frac{5\pi}{14}$ cubic units
 - (B) $\frac{10\pi}{14}$ cubic units
 - (C) $\frac{5\pi}{7}$ cubic units
 - (D) $\frac{10\pi}{7}$ cubic units
- 66 What is the volume of the solid formed when the region bounded by the curves $y = x^2$, $y = \sqrt{30 x^2}$ and the y-axis is rotated about the y-axis? Use the method of slicing.



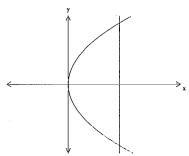
What is the correct expression for volume of this solid using the method of cylindrical shells?

- (A) $V = \int_0^{\sqrt{5}} 2\pi \left(x^2 \sqrt{30 x^2}\right) dx$
- (B) $V = \int_0^{\sqrt{5}} 2\pi x \left(x^2 \sqrt{30 x^2}\right) dx$
- (C) $V = \int_0^{\sqrt{5}} 2\pi \left(\sqrt{30 x^2} x^2\right) dx$
- (D) $V = \int_0^{\sqrt{5}} 2\pi x \left(\sqrt{30 x^2} x^2 \right) dx$

67 The region bounded by $y \le 4x^2 - x^4$ and $0 \le x \le 2$ is rotated about the y axis to form a solid.

What is the volume of this solid using the method of cylindrical shells?

- (A) $\frac{16\pi}{3}$ units³
- (B) $\frac{8\pi}{3}$ units³
- (C) $\frac{20\pi}{3}$ units³
- (D) $\frac{32\pi}{3}$ units³
- 68 A solid is formed by rotating the region enclosed by the parabola $y^2 = 4ax$, its vertex (0,0) and the line x = a, about the x-axis.



What is the volume of this solid using the method of cylindrical shells?

- (A) $\frac{7\pi a^3}{4}$ units³
- (B) $\frac{7\pi a^3}{8}$ units³
- (C) $\frac{7\pi a^3}{16}$ units³
- (D) $2\pi a^3$ units³

- 69 The region enclosed by $y = \sin x$, y = 0 and $x = \frac{\pi}{2}$ is rotated around the y-axis to produce a solid. What is the volume of this solid using the method of cylindrical shells?
 - (A) π units³
 - (B) $\frac{\pi}{2}$ units³
 - (C) $\frac{3\pi}{2}$ units³
 - (D) 2π units³

	olumes <u>M</u>	
	Solution	Criteria
61	Area of the slice is a circle radius is x and height y $A = \pi x^{2}$ $= \pi (y^{\frac{1}{3}})^{2} = \pi y^{\frac{2}{3}}$ $\delta V = \delta A.\delta y$ $V = \lim_{\delta y \to 0} \sum_{y=0}^{8} \pi y^{\frac{2}{3}} \delta y$ $= \int_{0}^{8} \pi y^{\frac{2}{3}} dy$ $= \pi \left[\frac{3}{5} y^{\frac{5}{3}} \right]_{0}^{8}$ $= \frac{3\pi}{5} \times 8^{\frac{5}{3}} = \frac{96\pi}{5} \text{ cubic units}$	1 Mark: D
62	The base is an annulus. $A = \pi(r_2^2 - r_1^2)$ $= \pi(r_2 + r_1)(r_2 - r_1)$ Now the r_1 and r_2 are the roots $y = 3x - x^2$ $r^2 - 3r + y = 0$ $r_2 + r_1 = 3$ (sum of the roots) $r = \frac{3 \pm \sqrt{3^2 - 4y}}{2}$ (quadratic formula) $r_2 - r_1 = 2 \times \frac{\sqrt{9 - 4y}}{2}$ $= \sqrt{9 - 4y}$ Area of the annulus $A = \pi(r_2 + r_1)(r_2 - r_1)$ $= 3\pi \sqrt{9 - 4y}$ $V = \lim_{\delta y \to 0} \sum_{y=0}^{\frac{4}{9}} 3\pi \sqrt{9 - 4y} \delta y$ $= \int_0^{\frac{9}{4}} 3\pi \sqrt{9 - 4y} dy$ $= 3\pi \int_0^{\frac{9}{4}} (9 - 4y)^{\frac{3}{2}} dy$ $= 3\pi \left[\frac{2}{3} \times -\frac{1}{4} (9 - 4y)^{\frac{3}{2}} \right]_0^{\frac{9}{4}}$	1 Mark: D

	The base is an annulus.	
63	$A = \pi (r_2^2 - r_1^2)$	
	$=\pi\left(r_2+r_1\right)\left(r_2-r_1\right)$	
	$(r-1)^2 + \frac{y^2}{4} = 1$	
	$r^2 - 2r + \frac{y^2}{4} = 0$	
	$r = \frac{2 \pm \sqrt{(-2)^2 - 4 \times 1 \times \frac{y^2}{4}}}{2}$	1 Mark: D
	$r = 1 \pm \sqrt{1 - \frac{y^2}{4}}$	
	Therefore $r_2 + r_1 = 2$ and $r_2 - r_1 = 2\sqrt{1 - \frac{y^2}{4}}$	
	$V = \lim_{\delta y \to 0} \sum_{y=-2}^{2} \pi \times 2 \times 2\sqrt{1 - \frac{y^{2}}{4}} \delta y$	
	$=\int_{-2}^{2}2\pi\sqrt{4-y^2}dy$	
	Area of the slice is an annulus	
	Inner radius is 1 and outer radius is $2 + y^2$ and height y	
	$A = \pi \left(R^2 - r^2 \right)$	
	$=\pi\left((2+y^2)^2-1^2\right)$	
ļ	$= \pi \left(4 + 4y^2 + y^4 - 1 \right)$	51.14 L D
64	$=\pi\left(y^4+4y^2+3\right)$	*1 Mark: B
	$\delta V = \delta A.\delta y$	
	$V = \lim_{\delta y \to 0} \sum_{y=-1}^{1} \pi \left(y^4 + 4y^2 + 3 \right) \delta y$	
	$= \int_{-1}^{1} \pi \left(y^4 + 4y^2 + 3 \right) dy$	

	Slices are taken perpendicular to the axis of rotation (<i>x</i> -axis). The base is an annulus.	
	$A = \pi(r_2^2 - r_1^2)$	
	$=\pi((2\sqrt{x})^2-(2x^3)^2)$	
	$= \pi(4x - 4x^6) = 4\pi(x - x^6)$	
	$V = \lim_{\delta x \to 0} \sum_{n=0}^{1} 4\pi (x - x^6) \delta x$	
65	XV	1 Mark: D
	$= \int_0^1 4\pi (x - x^6) dx$	
	$=4\pi \cdot \int_0^1 (x-x^6) dx$	
	$=4\pi\left[\frac{x^2}{2}-\frac{x^7}{7}\right]^{1}$	
	L 2 , 10	
	$=4\pi \left[(\frac{1}{2} - \frac{1}{7}) - 0 \right] = \frac{10\pi}{7}$	
	$\sqrt{30-x^2} = x^2$	
	$30 - x^2 = x^4$	
	$x^4 + x^2 - 30 = 0$	
	$\left(x^2+6\right)\left(x^2-5\right)=0$	
66	$x = \pm \sqrt{5}$	1 Mark: D
	Cylindrical shells radius is x and height y	
	$V = \lim_{\delta x \to 0} \sum_{x=0}^{\sqrt{5}} 2\pi x y \delta x$	
	$=\int_0^{\sqrt{3}} 2\pi x \left(\sqrt{30-x^2}-x^2\right) dx$	
	,	
	Cylindrical shells radius is x and height y	
	$V = \lim_{\delta x \to 0} \sum_{x=0}^{2} 2\pi x y \delta x$	
	$=2\pi\int_{0}^{2}xydx$	
	$=2\pi\int_0^2 x(4x^2-x^4)dx$	
67	$=2\pi\int_{0}^{2}4x^{3}-x^{5})dx$	1 Mark: D
	$=2\pi\left[x^4-\frac{x^6}{6}\right]_0^2$	
	$=2\pi\bigg[16-\frac{32}{6}\bigg]$	
	$=\frac{32\pi}{3}$	
L		

	Cylindrical shells radius is y and height $a - x = a - \frac{y^2}{4a}$	
	$V = \lim_{\delta y \to 0} \sum_{y=0}^{2a} 2\pi y \left(a - \frac{y^2}{4a}\right) \delta y$	
	$=2\pi \int_0^{2a} y(a-\frac{y^2}{4a})dy$	
68	$=2\pi \int_0^{2a} (ya - \frac{y^3}{4a}) dy$	1 Mark: D
	$=2\pi \left[\frac{ay^2}{2} - \frac{y^4}{16a} \right]_0^{2a}$	
	$=2\pi \left[\left(\frac{4a^3}{2} - \frac{16a^4}{16a} \right) - 0 \right]$	
	$=2\pi a^3$	
	Cylindrical shells radius is x and height sin x	
	$V = \lim_{\delta x \to 0} \sum_{x=0}^{\frac{\pi}{2}} 2\pi x \sin x \delta x$	
60	$=2\pi\int_0^{\pi} x \sin x dx$	434 1 5
69	$=2\pi\left(\left[x\cos x\right]_0^{\frac{\pi}{2}}\right)+\int_0^{\frac{\pi}{2}}\cos xdx$	1 Mark: D
	$=2\pi \left[\sin x\right]_0^{\frac{\pi}{2}}$	
	$=2\pi [1-0]$	
	$=2\pi$	