Geometrical applications of differentiation Solutions Main Menu

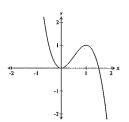
- 1 What are the x-coordinates of the two stationary points to the curve $y = 5 + 3x^3 2x^4$?
 - (A) $x = 0, x = \frac{2}{3}$
 - (B) $x = 0, x = \frac{3}{2}$
 - (C) $x = 0, x = \frac{8}{9}$
 - (D) $x = 0, x = \frac{9}{8}$
- 2 What are the x-coordinates of the two turning points to the curve $f(x) = x^3 12x^2 + 36x + 10$?
 - (A) x = -2, x = -6
 - (B) x = 2, x = 6
 - (C) x = 0, x = 3
 - (D) x = 3, x = 4
- 3 Consider the function $f(x) = 2x^3 6x + 1$ in the domain $-2 \le x \le 3$. What are the coordinates of its turning points and their nature?
 - (A) Maximum turning point at (1,-3) and minimum turning point at (-1,5)
 - (B) Maximum turning point at (-1,5) and minimum turning point at (1,-3)
 - (C) Maximum turning point at (-2,-3) and minimum turning point at (3,37)
 - (D) Maximum turning point at (3,37) and minimum turning point at (-2,-3)
- 4 Consider the function defined by $f(x) = x^3 6x^2 + 9x + 2$. What are the coordinates of its stationary points and their nature?
 - (A) Maximum stationary point at (1,6) and minimum stationary point at (3,2)
 - (B) Maximum stationary point at (3,2) and minimum stationary point at (1,6)
 - (C) Maximum stationary point at (6,1) and minimum stationary point at (2,3)
 - (D) Maximum stationary point at (2,3) and minimum stationary point at (6,1)

- 5 What values of x is the curve $f(x) = 2x^3 + x^2$ concave down?
 - (A) $x < -\frac{1}{6}$
 - (B) $x > -\frac{1}{6}$
 - (C) x < -6
 - (D) x > 6
- 6 What is the equation of the tangent to the curve $y = x^2 5x$ at the point (1, -4)?
 - (A) y = -3x 1
 - (B) y = -3x 7
 - (C) y = 3x + 7
 - (D) y = 3x 7
- 7 The line y = mx + b is a tangent to the curve $y = x^3 3x + 2$ at the point (-2, 0). What is value of m and b?
 - (A) m = 9 and b = -18
 - (B) m = 9 and b = 18
 - (C) m = 12 and b = -18
 - (D) m = 12 and b = 18
- 8 What is the equation of the normal to the curve $y = x^2 4x$ at (1,-3)?
 - (A) x+2y-7=0
 - (B) $\dot{x} 2y 7 = 0$
 - (C) 2x y 5 = 0
 - (D) 2x + y + 5 = 0
- 9 What is the equation of the normal to the curve $y = x^2 x 6$ at (6,24)?
 - (A) x+11y-270=0
 - (B) x-11y+270=0
 - (C) 11x y 42 = 0
 - (D) 11x + y + 42 = 0

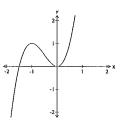
- 10 The graph y = f(x) passes through the point (1,4) and $f'(x) = 3x^2 2$. Which of the following expressions is f(x)?
 - (A) $x^3 2x$
 - (B) 2x-1
 - (C) $x^3 2x + 3$
 - (D) $x^3 2x + 5$
- 11 What points on the curve $y = x^3 4x^2 + 2x$ have a tangent parallel to the 2x + y = 3?
 - (A) $\left(-\frac{2}{3}, -\frac{92}{27}\right)$ and $\left(-2, -28\right)$
 - (B) $\left(-\frac{2}{3}, -\frac{92}{27}\right)$ and $\left(2, -4\right)$
 - (C) $(\frac{2}{3}, -\frac{4}{27})$ and (-2, -28)
 - (D) $(\frac{2}{3}, -\frac{4}{27})$ and (2, -4)
- 12 Consider the curve given by $y = \frac{1}{2}x^4 x^3$. What are the points of inflexion?
- (A) only (0, 0)
- (B) (0, 0) and $(-1, \frac{5}{8})$
- (C) (0, 0) and $(1, -\frac{1}{2})$
- (D) (0, 0) and $(\frac{3}{2}, -\frac{27}{32})$
- 13 A can of soup is the shape of a closed cylinder with a height h cm and a radius r cm. The volume of the can of soup is 400 cm³. What is the radius of the can if the surface area of the metal used to make the can of soup is to be minimized?
 - $(A) \cdot \sqrt[3]{\frac{100}{\pi}}$
 - (B) $\sqrt[3]{\frac{200}{\pi}}$
 - (C) $\sqrt[3]{\frac{400}{\pi}}$
 - (D) $\sqrt[3]{\frac{800}{\pi}}$

14 Which of the following is the graph of $f(x) = 2x^3 - 3x^2$?

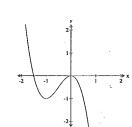
(A)



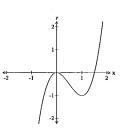
(B)



(C)



(D)



Objective Response Bank

Year 12 Mathematics

Worked solutions

Geo	ometrical applications of differentiation	Main Menu
	Solution	Criteria
1	Stationary points $\frac{dy}{dx} = 0$ $9x^2 - 8x^3 = 0$ $x^2(9 - 8x) = 0$ $x = 0, x = \frac{9}{8}$	1 Mark: D
2	Turning points $f'(x) = 0$ $3x^2 - 24x + 36 = 0$ $3(x^2 - 8x + 12) = 0$ 3(x - 2)(x - 6) = 0 x = 2, x = 6	1 Mark: B
3	Turning points $f'(x) = 0$ $6x^2 - 6 = 0$ 6(x+1)(x-1) = 0 x = -1, x = 1 Turning points are $(-1,5)$ and $(1,-3)$. f''(x) = 12x At $(1,-3)$, $f''(1) = 12 > 0$, Minimum turning point at $(1,-3)$ At $(-1,5)$, $f''(1) = -12 < 0$, Maximum turning point at $(-1,5)$	1 Mark: B
4	Stationary points $f'(x) = 0$ $3x^2 - 12x + 9 = 0$ $3(x-1)(x-3) = 0$ $x = 1, x = 3$ Stationary points are $(1,6)$ and $(3,2)$. f''(x) = 6x - 12 At $(1,6)$, $f''(1) = -6 > 0$, Maximum stationary point At $(3,2)$, $f''(3) = 6 < 0$, Minimum stationary point	1 Mark: A

	Concave down when $f''(x) < 0$	
	$f'(x) = 6x^2 + 2x$	
5	f''(x) = 12x + 2	1 Mark: A
	12x + 2 < 0	1 IVIUIK. 71
	1	:
	$x < -\frac{1}{6}$	
	du	
	$y = x^2 - 5x$ At the point (1,-4) $\frac{dy}{dx} = 2 \times 1 - 5 = -3$	
	$\frac{dy}{dx} = 2x - 5$	
6	$\int \frac{dx}{dx} = 2x - 3$	1 Mark: A
"	Point slope formula $y - y_1 = m(x - x_1)$	1 141411.71
	y - (-4) = -3(x-1)	
	y = -3x - 1	
	$y = x^3 - 3x + 2$ At the point $(-2,0)$ $\frac{dy}{dx} = 3 \times (-2)^2 - 3 = 9$	
	$\frac{dy}{dx} = 3x^2 - 3$	
7	Point slope formula $y - y_1 = m(x - x_1)$	1 Mark: B
	y - 0 = 9(x2)	
	y = 9x + 18	
	Hence $m=9$ and $b=18$	
	$y = x^2 - 4x$	
	$\frac{dy}{dx} = 2x - 4$	
	dx	
	At $(1,-3)$ $\frac{dy}{dx} = 2 \times 1 - 4 = -2$	
	$\frac{dx}{dx}$	
	Normal is perpendicular to the gradient of the tangent	
8	$m_1 m_2 = -1, m_1 \times -2 = -1, m_1 = \frac{1}{2}$	1 Mark: B
"	. 2	1 Wark. B
	Equation of the normal at $(1,-3)$	
	$y - y_1 = m(x - x_1)$	
	$y-(-3)=\frac{1}{2}(x-1)$	
	$y - (-3) - \frac{2}{2}(x - 1)$	
	2y+6=x-1	
	x-2y-7=0	
		L

9	$y = x^{2} - x - 6$ $\frac{dy}{dx} = 2x - 1$ At $(6,24)$ $\frac{dy}{dx} = 2 \times 6 - 1 = 11$ Normal is perpendicular to the gradient of the tangent $m_{1}m_{2} = -1, m_{1} \times 11 = -1, m_{1} = -\frac{1}{11}$ Equation of the normal at $(6,24)$ $y - y_{1} = m(x - x_{1})$ $y - 24 = -\frac{1}{11}(x - 6)$ $11y - 264 = -x + 6$ $x + 11y - 270 = 0$	1 Mark: A
10	$f'(x) = 3x^{2} - 2$ $f(x) = x^{3} - 2x + c$ Point (1,4) satisfies the function. $4 = 1^{3} - 2 \times 1 + c \text{ or } c = 5$ $\therefore f(x) = x^{3} - 2x + 5$	1 Mark: D
11	Gradient of line $2x + y = 3$ is -2 $y = x^3 - 4x^2 + 2x$ $\frac{dy}{dx} = 3x^2 + 8x + 2$ Parallel lines have equal gradients $3x^2 + 8x + 2 = -2$ $3x^2 + 8x + 4 = 0$ $(3x - 2)(x - 2) = 0$ Therefore $x = \frac{2}{3}$ and $x = 2$ Points are $(\frac{2}{3}, -\frac{4}{27})$ and $(2, -4)$	1 Mark: D

12	Possible points of inflexion $\frac{d^2y}{dx^2} = 0 \qquad 6x^2 - 6x = 0$ $6x(x-1) = 0$ $x = 0, x = 1$ Check for change in concavity When $x = -0.1$ then $\frac{d^2y}{dx^2} = 6 \times -0.1 \times (-0.1 - 1) > 0$ When $x = 0.1$ then $\frac{d^2y}{dx^2} = 6 \times 0.1 \times (0.1 - 1) < 0$ When $x = 1.1$ then $\frac{d^2y}{dx^2} = 6 \times 1.1 \times (1.1 - 1) > 0$ Hence $(0, 0)$ and $(1, -\frac{1}{2})$ are points of inflexion.	1 Mark: C
13	$V = \pi r^{2}h$ $400 = \pi r^{2} \times h$ $h = \frac{400}{\pi r^{2}}$ $SA = 2\pi r^{2} + 2\pi rh$ $= 2\pi r^{2} + 2\pi r \times \frac{400}{\pi r^{2}} = 2\pi r^{2} + \frac{800}{r}$ $\frac{dSA}{dr} = 4\pi r - 800r^{-2}$ Minimal SA occurs when $\frac{dSA}{dr} = 0$ $4\pi r - 800r^{-2} = 0 \text{ or } 4r \left(\pi - \frac{200}{r^{3}}\right) = 0$ Hence $r = 0$ (no can) or $\pi - \frac{200}{r^{3}} = 0$ $r = \sqrt[3]{\frac{200}{\pi}}$ $\frac{d^{2}SA}{dr^{2}} = 4\pi + 1600r^{-3} = 4\pi + \frac{1600}{r^{3}}$ At $r = \sqrt[3]{\frac{200}{\pi}} \frac{d^{2}SA}{dr^{2}} > 0$ and is a minima	1 Mark: B
14	1 D X	1 Mark: D