Integration

Solutions

Main Menu

15 The diagram below shows a native garden. All measurements are in metres.

What is an approximate value for the area of the native garden using the trapezoidal Rule with 4 intervals?

- (A) 31 m^2
- (B) 62 m^2
- (C) 71 m^2
- (D) 74 m^2
- 16 The table below shows the values of a function $f(x) = \sqrt{25 x^2}$ for six values of x.

x	0	1	2	3	4	5	
f(x)	5.00	4.90	4.58	4.00	3.00	0.00	

What value is an estimate for $\int_0^5 \sqrt{25-x^2} dx$ using trapezoidal rule with these six values?

- (A) 10.74
- (B) 12.65
- (C) 18.98
- (D) 37.96

17 An area is bounded by the curve $y = \frac{2}{3}\sqrt{9-x^2}$, the coordinate axes and the line x = 2.

What is an approximation for this area using the trapezoidal rule and three function values

- (A) 1.82
- (B) 2.69
- (C) 3.63
- (D) 7.26
- 18 The table below shows the values of a function f(x) for five values of x.

x	2	2.5	3	3.5	4
f(x)	4	1	-2	3	8

What value is an estimate for $\int_{1}^{1} f(x)dx$ using Simpson's rule with these five values?

- (A) 4
- (B) 6
- (C) 8
- (D) 12
- 19 The table below shows the values of a function f(x) for five values of x.

х	.0	2	4	6	8
f(x)	10	42	26	10	42

What value is an estimate for $\int_{0}^{8} f(x)dx$ using Simpson's rule with these five values?

- (A) 104
- (B) 208
- (C) 312
- (D) 624

- 20 What value is an estimate for $\int_{0}^{6} (x+1)^{-2} dx$ using Simpson's rule with 4 strips?
 - (A) 0.043

(B) 0.063

(C) 0.083

- (D) 0.250
- 21 What is the value of $\int_{1}^{2} x^{2} + 1 dx$?
 - (A) 4

(B) 5

(C) 6

- (D) 7
- 22 What is the area enclosed between the curves $y = x^2 + 1$ and y = 3x + 1?
 - (A) $\frac{3}{2}$ square units

(B) $\frac{9}{2}$ square units

(C) $\frac{27}{2}$ square units

- (D) $\frac{45}{2}$ square units
- 23 The diagram below shows the graph of $y = x^2 2x 8$.

- What is the correct expression for the area bounded by the x-axis and the curve $y = x^2 2x 8$ between $0 \le x \le 6$?
- (A) $A = \int_0^5 x^2 2x 8dx + \left| \int_0^5 x^2 2x 8dx \right|$
- (B) $A = \int_0^1 x^2 2x 8dx + \left| \int_0^6 x^2 2x 8dx \right|$
- (C) $A = \left| \int_0^6 x^2 2x 8dx \right| + \int_0^6 x^2 2x 8dx$
- (D) $A = \left| \int_0^4 x^2 2x 8dx \right| + \int_4^6 x^2 2x 8dx$

24 The diagram below shows the graph of $y = x^3 - 6x^2 + 9x + 2$ and the line x = 5.

- What is the value of the area bounded by the x-axis and the curve $y = x^3 6x^2 + 9x + 2$ between $0 \le x \le 5$?
- (A) 22.00 square units
- (B) 25.25 square units
- (C) 27.00 square units
- (D) 28.75 square units
- 25 The diagram below shows the graph of y = 5x and $y = 8x x^2$.

- What is the area between the curves y = 5x and $y = 8x x^2$?
- (A) 4.5 units²
- (B) 5.5 units²
- (C) 9.0 units²
- (D) 13.5 units²

26 The diagram below shows the graph of $y = \sin x$ and $y = 1 - \cos x$.

These graphs intersect at (0,0) and $(\frac{\pi}{2},1)$.

What is the value of the area between $y = \sin x$ and $y = 1 - \cos x$ over the domain

 $0 \le x \le \pi$?

- (A) 2
- (B) $2+\pi$
- (C) $2-\pi$
- (D) π
- 27 A region in the diagram is bounded by the curve $y = x^4$, the y-axis and the line y = 16.

Which of the following expressions is correct for the volume of the solid of revolution when this region is rotated about the *y*-axis?

- $(A) \quad V = \pi \int_{0}^{2} x^{8} dx$
- (B) $V = \pi \int_0^{16} x^8 dx$
- $(C) \quad V = \pi \int_0^2 y^{\frac{1}{2}} dy$
- (D) $V = \pi \int_0^{6} y^{\frac{1}{2}} dy$

- 28 The semi-circle $y = \sqrt{9 x^2}$ is rotated about the x-axis. Which of the following expressions is correct for the volume of the solid of revolution?
 - (A) $V = \pi \int_{0}^{3} (9 x^{2}) dx$
 - (B) $V = 2\pi \int_{0}^{3} (9 x^{2}) dx$
 - (C) $V = \pi \int_{0}^{3} (9 y^{2}) dy$
 - (D) $V = 2\pi \int_{0}^{3} (9 y^{2}) dy$
- 29 The region in the first quadrant bounded by the curve $x^2 + 4y^2 = 16$ and the coordinate axes is rotated about the y-axis. What is the volume of the solid formed by this rotation?
 - (A) $4\pi \text{ units}^3$

(B) $8\pi \text{ units}^3$

(C) $\frac{64\pi}{3}$ units³

- (D) $\frac{128\pi}{3}$ units³
- **30** The diagram below shows the graph of $y = 2\sqrt{x}$ and $y = \frac{x}{4}$.

Which of the following is the correct expression for the volume of the solid of revolution when the area between the curve $y = 2\sqrt{x}$ and $y = \frac{x}{4}$ is rotated around the x-axis?

- (A) $V = \int_0^8 (4y \frac{y^2}{2}) dy$
- (B) $V = \int_0^{16} (2\sqrt{x} \frac{x}{4}) dx$
- (C) $V = \pi \int_0^8 (16y^2 \frac{y^4}{4}) dy$
- (D) $V = \pi \int_0^{6} (4x \frac{x^2}{16}) dx$

- 31 The area under the curve $y = \frac{5}{\sqrt{x}}$, for $1 \le x \le e^3$, is rotated about the x axis. What is the exact volume of the solid of revolution?
 - (A) 15π units³
 - (B) $25\pi \text{ units}^3$
 - (C) $28\pi \text{ units}^3$
 - (D) $75\pi \text{ units}^3$

Inte	Integration Main M			
	Solution	Criteria		
15	$A = \frac{h}{2}(d_f + 2d_m + d_t) + \frac{h}{2}(d_f + 2d_m + d_t)$ $= \frac{5}{2}(2 + 2 \times 4.5 + 5.1) + \frac{5}{2}(5.1 + 2 \times 3.6 + 0)$ $= 71 \text{ m}^2$	1 Mark: C		
16	$\int_{0}^{5} \sqrt{25 - x^{2}} dx = \frac{h}{2} \left[y_{0} + y_{5} + 2 \times (y_{1} + y_{2} + y_{3} + y_{4}) \right]$ $= \frac{1}{2} \left[5 + 0 + 2 \times (4.90 + 4.58 + 4 + 3) \right]$ $= 18.98$	1 Mark: C		
17	$\int_{0}^{2} \frac{2}{3} \sqrt{9 - x^{2}} dx = \frac{h}{2} \left[y_{0} + y_{2} + 2 \times (y_{1}) \right]$ $= \frac{1}{2} \left[2 + \frac{2\sqrt{8}}{3} + 2 \times (\frac{2\sqrt{5}}{3}) \right]$ $= 3.630974 \approx 3.63$	1 Mark: C		
18	$\int_{2}^{4} f(x)dx = \frac{h}{3} [y_{0} + y_{4} + 4(y_{1} + y_{3}) + 2y_{2}]$ $= \frac{1}{3} [4 + 8 + 4 \times (1 + 3) + 2 \times -2]$ $= 4$	1 Mark: A		
19	$\int_0^8 f(x)dx = \frac{h}{3} [y_0 + y_4 + 4(y_1 + y_3) + 2y_2]$ $= \frac{2}{3} [10 + 42 + 4 \times (42 + 10) + 2 \times 26]$ $= 208$	1 Mark: B		
20	$\int_{3}^{6} (x+1)^{-2} dx = \frac{h}{3} [y_0 + y_4 + 4(y_1 + y_3) + 2y_2]$ $= \frac{0.5}{3} [0.0625 + 0.0278 + 4 \times (0.0494 + 0.0331) + 2 \times 0.04]$ $= 0.0833833$ ≈ 0.083	1 Mark: C		
21	$\int_{-1}^{2} x^{2} + 1 dx = \left[\frac{x^{3}}{3} + x \right]_{-1}^{2}$ $= \left[\left(\frac{2^{3}}{3} + 2 \right) - \left(\frac{-1^{3}}{3} + -1 \right) \right]$ $= 6$	1 Mark: C		

	$x^2 + 1 = 3x + 1$	
	$x^2 - 3x = 0$	
	x(x-3)=0	
	Point of intersection occurs when $x = 0$ and $x = 3$	
	$A = \int_0^3 (3x+1) - (x^2+1)dx$	
22	$= \int_0^6 (3x - x^2) dx$	1 Mark: B
	$= \left[\frac{3x^2}{2} - \frac{x^3}{3} \right]_0^3$	
	$= \left[\left(\frac{3 \times 3^2}{2} - \frac{3^3}{3} \right) - \left(\frac{3 \times 0^2}{2} - \frac{0^3}{3} \right) \right]$	
	$=\frac{9}{2}$ square units	
	Point P is an x -intercept.	
	$x^2 - 2x - 8 = 0$	
	(x-4)(x+2)=0	
23	Therefore $x = 4$ or $x = -2$	1 Mark: D
25	The x value of point P is positive (diagram).	
	Coordinates of P is $(4,0)$	
	$A = \left \int_{0}^{4} x^{2} - 2x - 8dx \right + \int_{0}^{4} x^{2} - 2x - 8dx$	
	$A = \int_0^5 (x^3 - 6x^2 + 9x + 2)dx$	
	$= \left[\frac{x^4}{4} - \frac{6x^3}{3} + \frac{9x^2}{2} + 2x \right]^5$	
24	70	1 Mark: D
	$= \left[\left(\frac{5^4}{4} - \frac{6 \times 5^3}{3} + \frac{9 \times 5^2}{2} + 2 \times 5 \right) - 0 \right]$	
	= 28.75 square units	
	$A = \int_0^3 \left((8x - x^2) - 5x \right) dx$	
	$=\left[-\frac{x^3}{3} + \frac{3x^2}{2}\right]_0^3$	
25		1 Mark: A
	$= \left[\left(-\frac{3^3}{3} + \frac{3 \times 3^2}{2} \right) - 0 \right]$	
	= 4.5 units ²	

26	$A = \int_0^{\frac{\pi}{2}} (\sin x - (1 - \cos x)) dx + \int_{\frac{\pi}{2}}^{\pi} (1 - \cos x - \sin x) dx$ $= \left[-\cos x - x + \sin x \right]_0^{\frac{\pi}{2}} + \left[x - \sin x + \cos x \right]_{\frac{\pi}{2}}^{\pi}$ $= \left(0 - \frac{\pi}{2} + 1 - (-1) \right) + \left(\pi - 0 - 1 - \left(\frac{\pi}{2} - 1 \right) \right)$ $= 2 - \frac{\pi}{2} + \frac{\pi}{2} = 2$	1 Mark: A
27	Now $y = x^4$ or $y^{\frac{1}{2}} = x^2$ $V = \pi \int_0^6 x^2 dy$	1 Mark: D
	$= \pi \int_0^6 y^{\frac{1}{2}} dy$ Now $y = \sqrt{9 - x^2}$ or $y^2 = 9 - x^2$	
28	$V = \pi \int_{3}^{3} y^{2} dx$ $= 2\pi \int_{0}^{3} (9 - x^{2}) dx$ Substitute $x = 0$ to find where the curve cuts the y-axis.	1 Mark: B
29	$x = 0 \text{ then } 0^2 + 4y^2 = 16$ $y^2 = 4$ $y = \pm 2$ Solid is in the first quadrant only hence $0 < y < 2$ Also $x^2 + 4y^2 = 16$ or $x^2 = 16 - 4y^2$ $V = \pi \int_0^x x^2 dy$ $= \pi \int_0^2 (16 - 4y^2) dy$ $= \pi \left[16y - \frac{4}{3}y^3 \right]_0^2$ $= \pi \left[16 \times 2 - \frac{4}{3} \times 2^3 \right]$ $= \frac{64\pi}{3} \text{ units}^3$	1 Mark: C
30	$V = \pi \int_0^{16} y^2 dx$ $= \pi \int_0^{6} \left((2\sqrt{x})^2 - (\frac{x}{4})^2 \right) dx$ $= \pi \int_0^{6} (4x - \frac{x^2}{16}) dx$	1 Mark: D

	$V = \pi \int_{a}^{b} y^{2} dx$	
	$=\pi\int_0^{e^3}(\frac{5}{\sqrt{x}})^2dx$	
31	$=\pi\int_0^3 \frac{25}{x} dx$	1 Mark: D
	$=\pi \left[25\ln x\right]_0^{e^3}$	
	$=25\pi\Big[\ln e^3-\ln 1\Big]$	
	$=75\pi \text{ units}^3$	