Linear functions

Solutions

Main Menu

- 66 What is the midpoint of (-3,5) and (2,-3)?
 - (A) $(-\frac{1}{2},1)$
 - (B) $(\frac{1}{2},-1)$
 - (C) (0, 1)
 - (D) $(2\frac{1}{2},4)$
- 67 What is the gradient of the line joining (-4,1) and (4,7)?
 - (A) -1
 - (B) $-\frac{3}{4}$
 - (C) $\frac{3}{4}$
 - (D) 1
- 68 What is the gradient of the line perpendicular to the line 2x + y 2 = 0?
 - (A) -2
 - (B) $-\frac{1}{2}$
 - (C) $\frac{1}{2}$
 - (D) 2
- 69 What is the equation of the line though the points (8,0) and (0,6)?
 - (A) 4x + 3y + 24 = 0
 - (B) 3x + 4y + 24 = 0
 - (C) 4x+3y-24=0
 - (D) 3x + 4y 24 = 0

- 70 The line 6x ky = 2 passes through the point (3,2). What is the value of k?
 - (A) $\frac{10}{3}$

(B) $-\frac{10}{3}$

(C) -8

- (D) 8
- 71 What is the value of $\frac{a}{b}$ if the lines ax + 2y = 6 and 4y = bx 9 are parallel?
 - (A) $\frac{1}{2}$

(B) $-\frac{1}{2}$

(C) -2

- (D) 2
- 72 Let A(-5,9), B(-3,y) and C(2,-5) be three points on a number plane. What is the value of y if BC is perpendicular to AC?
 - (A) -2.5
 - (B) -4.5
 - (C) -7.5
 - (D) -9.5
- 73 The points A, B, C and D have coordinates (0,a), (3,4), (6,2) and (-3,-1) respectively.

- What is the value of a if AB is parallel to DC?
- (A) a = 2.5
- (B) a = 3
- (C) a = 3.5
- (D) a = 5

74 The points A, B and C have coordinates (2,0), (1,8) and (8,4) respectively. The angle between the line AC and the x-axis is θ .

What is the equation of the line AC?

(A)
$$2x-3y-4=0$$

(B)
$$3x-2y-4=0$$

(C)
$$2x-3y+6=0$$

(D)
$$3x-2y-6=0$$

75 On a number plane the points D, E and F have coordinates (-4,-3), (-1,3) and (11,9) respectively. DE is parallel to GF and DG is parallel to the x axis.

What is the equation of the line FG?

(A)
$$2x - y - 7 = 0$$

(B)
$$2x - y - 13 = 0$$

(C)
$$x-2y+13=0$$

(D)
$$x-2y+7=0$$

76 What is the equation of the line parallel to the y-axis that passes through the point (1,2)?

(A)
$$x = 1$$

(B)
$$x = 2$$

(C)
$$y = 1$$

(D)
$$y = 2$$

77 Which of the following could be the graph of $y = \frac{2}{3}x - 2$?

(A)

(B)

(C)

(D)

- 78 What is the point of intersection of the lines y = x + 2 and y = -x + 4?
 - (A) (1, 2)
 - (B) (2, 1)
 - (C) (1, 3)
 - (D) (3, 2)

Line	Linear functions Main Menu		
	Solution	Criteria	
66	Midpoint = $(\frac{-3+2}{2}, \frac{5+-3}{2}) = (-\frac{1}{2}, 1)$	1 Mark: A	
67	$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 1}{4 4} = \frac{6}{8} = \frac{3}{4}$	1 Mark: C	
	2x + y - 2 = 0 Gradient is -2		
:	y = -2x + 2		
68	Perpendicular to the line then $m_1 m_2 = -1$	1 Mark: C	
	$-2 \times m = -1 \text{ or } m = \frac{1}{2}$		
	Gradient of line		
69	$M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 0}{0 - 8} = -\frac{6}{8} = -\frac{3}{4}$	1 Mark: D	
	$y-y_1 = m(x-x_1)$ $y-0 = -\frac{3}{4}(x-8)$		
	4y = -3(x-8)		
	3x + 4y - 24 = 0		
70	(3,2) satisfies the equation $6x - ky = 2$	1 Mark; D	
	$6 \times 3 - k \times 2 = 2$ $18 - 2k = 2$		
	$ \begin{vmatrix} 18 - 2k = 2 \\ -2k = -16 \text{ or } k = 8 \end{vmatrix} $		
	$ax + 2y = 6 \qquad 4y = bx - 9$		
	$2y = -ax + 6$ $y = \frac{b}{4}x - \frac{9}{4}$		
71	$y = -\frac{a}{4}x - \frac{a}{4}$	1 Mark: B	
	<u> </u>		
	Parallel lines $m_1 = m_2$		
	$\frac{-a}{2} = \frac{b}{4} \text{ or } \frac{a}{b} = -\frac{1}{2}$		
	Gradient of BC $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{y - (-5)}{-3 - 2} = \frac{y + 5}{-5}$		
	Gradient of AC $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{9 - (-5)}{-5 - 2} = \frac{14}{-7} = -2$		
72	Perpendicular lines $m_1 m_2 = -1$	1 Mark: C	
	$\frac{y+5}{-5} \times -2 = -1$		
	2y+10=-5		
	2y = -15 or $y = -7.5$		

73	Gradient of AB $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - a}{3 - 0} = \frac{4 - a}{3}$ Gradient of AC $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - (-1)}{6 - (-3)} = \frac{3}{9} = \frac{1}{3}$ Parallel lines $m_1 = m_2$ $\frac{4 - a}{3} = \frac{1}{3}$ 4 - a = 1 a = 3	1 Mark: B
74	Gradient of AC $M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 0}{8 - 2} = \frac{4}{6} = \frac{2}{3}$ $y - y_1 = m(x - x_1)$ $y - 0 = \frac{2}{3}(x - 2)$ $3y = 2(x - 2)$ $2x - 3y - 4 = 0$	1 Mark: A
75	Line FG has the same gradient as DE (parallel lines) $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - (-3)}{-1 - (-4)} = \frac{6}{3} = 2$ $y - y_1 = m(x - x_1)$ $y - 9 = 2(x - 11)$ $y - 9 = 2x - 22$ $2x - y - 13 = 0$	1 Mark: B
76	x = 1 (vertical line through (1,2))	1 Mark: A
77	Gradient is $\frac{2}{3}$ and y-intercept is -2	1 Mark: D
78	Point of intersection has the same y value. x+2=-x+4 $y=x+22x=2$ $y=1+2x=1$ = 3 Point of intersection is (1, 3)	1 Mark: C