Logarithmic and exponential functions

Solutions

Main Menu

- 50 What is the solution to the equation $4^x = 32$?
 - (A) 0.4
 - (B) 2.5
 - (C) 3
 - (D) 8
- 51 What is the solution to the equation $\log_e(x+2) \log_e x = \log_e 4$?
 - (A) $\frac{2}{5}$
 - (B) $\frac{2}{3}$
 - (C) $\frac{3}{2}$
 - (D) $\frac{5}{2}$
- 52 Which of the following is an expression for $\frac{dy}{dx}$ if $y = \ln(x^2 4)$?
 - (A) $\frac{dy}{dx} = 2x$
 - (B) $\frac{dy}{dx} = \frac{1}{x^2 4}$
 - $(C) \quad \frac{dy}{dx} = \frac{2}{x^2 4}$
 - (D) $\frac{dy}{dx} = \frac{2x}{x^2 4}$
- 53 What are the solutions to the equation $e^{6x} 7e^{3x} + 6 = 0$?
 - (A) x = 1 and x = 6
 - (B) $x = 0 \text{ and } x = \frac{\ln 6}{2}$
 - (C) $x = 0 \text{ and } x = \frac{\ln 6}{3}$
 - (D) $x = 1 \text{ and } x = \frac{\ln 6}{2}$

- 54 What is the derivative of $(1 + \log_e x)^4$?
 - (A) $4(1 + \log_e x)^3$
 - (B) $\frac{\left(1 + \log_e x\right)^5}{5}$
 - $(C) \quad \frac{4(1+\log_e x)^3}{x}$
 - (D) $\frac{\left(1 + \log_e x\right)^5}{5x}$
- 55 What is the derivative of $\log_2 x$?
 - (A) $\frac{1}{x}$
 - (B) $\frac{1}{2x}$
 - (C) $\ln 2x$
 - (D) $\frac{1}{x \ln 2}$
- 56 What is the derivative of x^2e^x ?
 - (A) $2xe^x$
 - (B) $e^{x}(2+x)$
 - (C) $\frac{x^3}{3}e^{x^3}$
 - (D) $xe^{x}(2+x)$
- 57 What is the derivative of $2e^x \cos x$ with respect to x?
 - (A) $-2e^x \sin x$
 - (B) $-2e^x \cos x$
 - (C) $2e^x(\sin x \cos x)$
 - (D) $2e^x(\cos x \sin x)$

- 58 What is the derivative of $\frac{e^x}{x^2}$?
 - (A) $\frac{e^x}{2x}$
 - (B) $\frac{3e^x}{x^3}$
 - (C) $\frac{e^x(x-2)}{x^3}$
 - $(D) \quad \frac{e^x(x^2-2x)}{x^2}$
- 59 What is the derivative of $x^2 \log_e x$ with respect to x?
 - (A) $2e^{\sin^2 x} \sin x$
 - (B) $2e^{\sin^2 x}\sin x\cos x$
 - (C) $2e^{\cos^2 x}\sin x$
 - (D) $2e^{\cos^2 x} \sin x \cos x$
- 60 What is the derivative of $\log_e(\cos x)$ with respect to x?
 - (A) $-\frac{1}{\sin x}$
 - (B) $-\tan x$
 - (C) $\frac{1}{\cos x}$
 - (D) $\tan x$
- 61 What is the derivative of $\log_e \left(\frac{x+1}{x-1} \right)$ with respect to x?
 - $(A) \quad \frac{x+1}{x-1}$
 - (B) $\frac{-2}{x-1}$
 - (C) $\frac{-2}{x^2-1}$
 - (D) $\frac{2}{x^2-1}$

- 62 What is the value of $\int_{-4}^{1} \frac{2}{x+5} dx$?
 - (A) 2 ln 5
 - (B) 2ln6
 - (C) 2 ln 7
 - (D) ln12
- 63 What is the value of $\int_2^6 \frac{1}{x+2} dx$?
 - (A) ln 2
 - (B) ln 4
 - (C) ln 6
 - (D) ln 8
- 64 What is the value of $\int_{0}^{x} (e^{2x} + 1) dx$?
 - (A) $\frac{1}{2}e^2$
 - (B) $\frac{1}{2}(e^2+1)$
 - (C) e^2
 - (D) $e^2 + 1$

Applications of calculus to the physical world Solutions Main Menu

- 65 Ten kilograms of chlorine is placed in water and begins to dissolve. After t hours the amount A kg of undissolved chlorine is given by $A = 10e^{-kt}$. What is the value of k given that A = 3.6 and t = 5?
 - (A) -0.717
 - (B) -0.204
 - (C) 0.204
 - (D) 0.717
- 66 The population of a colony of bugs is increasing continuously at a rate proportional to the existing population. The present population is 20 000 and the population 3 months ago was 8000. What is the value of *k*?
 - (A) -0.916
 - (B) -0.305
 - (C) 0.305
 - (D) 0.916
- 67 The population of a town is falling at a constant rate, so that after 25 years the population will have halved, and $\frac{dP}{dt} = -kP$, where P is the population of the town and t is the time in years. What is the value of k?
 - (A) $\frac{\ln 0.5}{-25}$
 - (B) $\frac{\ln 0.5}{25}$
 - (C) $\frac{\ln 2}{-25}$
 - (D) $\frac{\ln 2}{25}$
- 68 It is assumed that the number N(t) of ants in a certain nest at time $t \ge 0$ is given by $N(t) = \frac{A}{1 + e^{-t}}$ where A is a constant and t is measured in months. At time t = 0, N(t) is estimated at 2×10^5 ants. What is the value of A?
 - (A) 2×10^5
 - (B) 2×10^{-5}
 - (C) 4×10^5
 - (D) 4×10^{-5}

Log	arithmic and exponential functions	Main Menu
	Solution	Criteria
50	$4^{x} = 32$ $(2^{2})^{x} = 2^{5}$ $2x = 5x$ $x = 2.5$	1 Mark: B
51	$\log_e(\frac{x+2}{x}) = \log_e 4$ $(\frac{x+2}{x}) = 4$ $x+2 = 4x$ $3x = 2$ $x = \frac{2}{3}$	1 Mark: B
52	$y = \ln\left(x^2 - 4\right)$ $\frac{dy}{dx} = \frac{1}{x^2 - 4} \times 2x = \frac{2x}{x^2 - 4}$	1 Mark: D
53	$(e^{3x} - 1)(e^{3x} - 6) = 0$ $e^{3x} = 1, 6$ $3x = 0 \text{ or } 3x = \ln 6$ $x = 0 \text{ or } x = \frac{\ln 6}{3}$	1 Mark: C
54	$\frac{d}{dx}(1 + \log_e x)^4 = 4(1 + \log_e x)^3 \times \frac{1}{x}$ $= \frac{4(1 + \log_e x)^3}{x}$	1 Mark: C
55	$\frac{d}{dx}\log_2 x = \frac{d}{dx} \left(\frac{\ln x}{\ln 2}\right)$ $= \frac{1}{\ln 2} \times \frac{1}{x}$ $= \frac{1}{x \ln 2}$	1 Mark: D
56	$\frac{d}{dx}(x^2e^x) = 2xe^x + x^2e^x$ $= xe^x(2+x)$	1 Mark: D

57	$\frac{d}{dx}2e^x\cos x = 2e^x(-\sin x) + \cos x 2e^x$	1 Mark: D
	$=2e^{x}(\cos x-\sin x)$	
58	$\frac{d}{dx}(\frac{e^x}{x^2}) = \frac{x^2 e^x - e^x 2x}{(x^2)^2}$ $= \frac{e^x (x-2)}{x^3}$	1 Mark: C
59	$\frac{d}{dx}e^{\sin^2 x} = e^{\sin^2 x} \times \frac{d}{dx}(\sin^2 x)$ $= e^{\sin^2 x} \times 2\sin x \cos x$ $= 2e^{\sin^2 x} \sin x \cos x$	1 Mark: B
60	$\frac{d}{dx}\log_e(\cos x) = \frac{1}{\cos x} \times (-\sin x)$ $= -\tan x$	1 Mark: B
61	$\frac{d}{dx}\log_e\left(\frac{x+1}{x-1}\right) = \frac{(x-1)}{(x+1)} \times \frac{(x-1)(1) - (x+1)(1)}{(x-1)^2}$ $= \frac{x-1-x-1}{(x+1)(x-1)}$ $= \frac{-2}{x^2-1}$	1 Mark: C
62	$\int_{-4}^{4} \frac{2}{x+5} dx = 2 \left[\ln(x+5) \right]_{-4}^{4}$ $= 2(\ln 6 - \ln 1)$ $= 2 \ln 6$	1 Mark: B
63	$\int_{2}^{6} \frac{1}{x+2} dx = \left[\ln(x+2) \right]_{2}^{6}$ $= (\ln 8) - (\ln 2)$ $= \ln 2$	1 Mark: A
64	$\int_{0}^{1} (e^{2x} + 1) dx = \left[\frac{1}{2} e^{2x} + x \right]_{0}^{1}$ $= (\frac{1}{2} e^{2} + 1) - (\frac{1}{2})$ $= \frac{1}{2} (e^{2} + 1)$	1 Mark: B