Not to scale

Trigonometric ratios

Solutions

Main Menu

- 46 What is the value of $\sin x$ in the triangle below?
 - (A) $\frac{b}{c}$
 - (B) $\frac{a}{b}$
 - (C) $\frac{b}{a}$
 - (D) $\frac{a}{c}$

- 47 What is the value of x in the diagram?
 - (A) 6 cos 42°
 - (B) $\frac{6}{\cos 42^{\circ}}$
 - (C) 6sin 42°
 - (D) $\frac{6}{\sin 42^{\circ}}$

Not to scale

48 Hannah correctly calculated the size of angle θ using trigonometry.

Not to scale

What was her first line of working?

(A) $\cos\theta = \frac{12}{13}$

(B) $\cos \theta = \frac{13}{12}$

(C) $\sin \theta = \frac{12}{13}$

(D) $\sin \theta = \frac{13}{12}$

49 The two buildings below are standing on level ground. The horizontal distance between the buildings is 18.5 metres and the angle of elevation between the buildings is 32°.

What the difference in height (h) between the buildings?

- (A) 9.8 m
- (B) 11.6 m
- (C) 15.7 m
- (D) 29.6 m
- 50 A four metre ladder reaches up a vertical wall making an angle of 51° with the ground.

How far is the foot of the ladder from the wall?

- (A) 2.5 m
- (B) 3.1 m
- (C) 5.1 m
- (D) 6.4m

- 51 A woman is standing on level ground 70 metres from the base of a vertical cliff. The angle of elevation to the top of the cliff is 40°. Allowing for the fact that the woman is 1.8 metres tall, what is the height of the cliff?
 - (A) 58 metres
 - (B) 59 metres
 - (C) 60 metres
 - (D) 61 metres
- 52 What is solution to the equation $2\cos\beta = -\sqrt{3}$ for $0^{\circ} \le \beta \le 360^{\circ}$?
 - (A) $\beta = 30^{\circ} \text{ or } 330^{\circ}$
 - (B) $\beta = 60^{\circ} \text{ or } 300^{\circ}$
 - (C) $\beta = 150^{\circ} \text{ or } 210^{\circ}$
 - (D) $\beta = 120^{\circ} \text{ or } 240^{\circ}$
- 53 What is solution to the equation $\cos(\frac{\theta}{2} + 20^{\circ}) = \sin \theta$ for $0^{\circ} \le \theta \le 90^{\circ}$?
 - $\theta = 20^{\circ}$
 - (B) $\theta = 40^{\circ}$
 - (C) $\theta = \frac{160^{\circ}}{3}$
 - (D) $\theta = \frac{140^{\circ}}{3}$
- 54 Alex leaves point *X* and walks on a bearing of 230°. Brooke leaves point *X* and walks on a bearing of S70°E.

15

What is the angle AXB?

- (A) 50°
- (B) 120°
- (C) 160°
- (D) 300°

- 55 A point A is 6 km south-west of a point O and a point B is 9 km on a bearing of 140° from O. What is the size of $\angle AOB$?
 - (A) 75°
 - (B) 85°
 - (C) 95°
 - (D) 105°
- 56 A sailing boat travels due east from A to B. It then turns and sails on a bearing of 210°. What is the boat's bearing from A when the boat is closest to A?

- (B) 120°
- (C) 150°
- (D) 210°

57 The compass bearing of Y from X is S49°W.

What is the compass bearing of X from Y?

- (A) S49°W
- (B) S41°W
- (C) N49°E
- (D) N41°E

- 58 Three markers are placed out to sea. Marker B is 4 km north of marker A. However to sail from A to B a boat must first sail from A to C on a bearing 025° and then turn and sail from C to B on a bearing of 335°. What is the distance from A to C?
 - (A) 2.2 km
 - (B) 4.0 km
 - (C) 6.3 km
 - (D) 28.1 km
- 59 What is the approximate length of the side marked with the letter x?

- (B) 31
- (C) 39
- (D) 67

60 Which formula describes how to calculate the size of angle *ABC*?

(C)
$$\sin B = \frac{36\sin 85}{46}$$

(D)
$$\sin B = \frac{42\sin 85}{32}$$

61 What is the correct expression for AC in triangle ABC?

$$(A) \quad \frac{15\sin 80^{\circ}}{\sin 40^{\circ}}$$

$$(B) \quad \frac{15\sin 80^{\circ}}{\sin 60^{\circ}}$$

$$(C) \quad \frac{15\sin 40^{\circ}}{\sin 60^{\circ}}$$

$$(D) \quad \frac{\sin 40^{\circ}}{15\sin 80^{\circ}}$$

- $C \stackrel{B}{\checkmark} 0^{\circ}$
- 62 The following triangle has sides 30 cm, 50 cm and 60 cm.

Angle C is the largest angle. Which of the following expressions is correct for angle C?

(A)
$$\cos C = \frac{30^2 + 60^2 - 50^2}{2 \times 30 \times 60}$$

(B)
$$\cos C = \frac{50^2 + 30^2 - 60^2}{2 \times 50 \times 30}$$

(C)
$$\cos C = \frac{50^2 + 60^2 - 30^2}{2 \times 50 \times 60}$$

(D)
$$\operatorname{Cos} C = \frac{50^2 + 30^2 - 60^2}{2 \times 50 \times 60}$$

63 The smallest angle in the triangle below is θ .

What is the value of θ to the nearest degree?

- (A) 30°
- (B) 45°
- (C) 53°
- (D) 82°

64

Not to scale

Which trignometric formula would be most useful in calculating the length of side BC?

- (A) $c^2 = a^2 + b^2 2ab \cos C$
- (B) $A = \frac{1}{2} a b \sin C$
- (C) $\cos C = \frac{a^2 + b^2 c^2}{2ab}$
- (D) $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
- **65** What is the area of triangle *PQR* to the nearest square metre?
 - (A) 141 m^2
 - (B) 146 m^2
 - (C) 283 m^2
 - (D) 296 m^2

Trigonometric ratios		Main Menu
	Solution	Criteria
46	$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{a}{c}$	1 Mark: D
47	$\cos 42^\circ = \frac{6}{x}$ $x = \frac{6}{\cos 42^\circ}$	1 Mark: B
48	$\sin \theta = \frac{\text{Opposite side}}{\text{Hypotenuse}} = \frac{12}{13}$	1 Mark: C
49	$\tan 32^{\circ} = \frac{h}{18.5}$ $h = 18.5 \times \tan 32^{\circ}$ $= 11.56008301 \approx 11.6 \text{ m}$	1 Mark: B
50	$\cos 51 = \frac{x}{4}$ $x = \cos 51 \times 4$ $= 2.517281564$ $= 2.5 \text{ m (correct to 1 decimal place)}$	1 Mark: A
51	$\tan 40 = \frac{x}{70}$ $x = 70 \tan 40$ $= 58.73697418$ Height of the cliff is 1.8 + 58.736= 60.536 or 61 metres	1 Mark: D
52	$2\cos\beta = -\sqrt{3}$ $\cos\beta = -\frac{\sqrt{3}}{2}$ $\beta = 150^{\circ} \text{ or } 210^{\circ}$	1 Mark: C
53	Sine and Cosine are complementary angles $\sin \theta = \cos(90 - \theta)$ $\cos(\frac{\theta}{2} + 20^\circ) = \cos(90^\circ - \theta)$ $\frac{\theta}{2} + 20^\circ = 90^\circ - \theta$ $\theta + 40^\circ = 180^\circ - 2\theta$ $3\theta = 140^\circ$ $\theta = \frac{140^\circ}{3}$	1 Mark: D

54	Alex A $\angle AXB = 50^{\circ} + 70^{\circ} = 120^{\circ}$ B Brooke	1 Mark: B
55	$\angle BOS = 180 - 140 \text{ (angle } OB \text{ with } NS)$ = 40 $\angle AOB = 45 + 40$ = 85	E 1 Mark: B
56	Bearing = $90^{\circ} + 30^{\circ}$ = 120°	1 Mark: B
57	N49°E	1 Mark: C
58	$\frac{AC}{\sin 25} = \frac{4}{\sin 130}$ $AC = \frac{4\sin 25}{\sin 130}$ $= 2.206755838$ $\approx 2.2 \text{ km}$	1 Mark: A
59	$\frac{x}{\sin 127^{\circ}} = \frac{25.8}{\sin 18^{\circ}}$ $x = \frac{25.8 \times \sin 127^{\circ}}{\sin 18^{\circ}}$ $= 66.67852103$	1 Mark: D
60	$\frac{\sin B}{32} = \frac{\sin 85}{46}$ $\sin B = \frac{32\sin 85}{46}$	1 Mark: A
61	$\frac{AC}{\sin 80^\circ} = \frac{15}{\sin 40^\circ}$ $AC = \frac{15\sin 80^\circ}{\sin 40^\circ}$	1 Mark: A

Year 11 Mathematics

62	Largest angle is opposite the longest side (60 cm) Cosine rule $\cos C = \frac{50^2 + 30^2 - 60^2}{2 \times 50 \times 30}$	1 Mark: B
63	$\cos \theta = \frac{34^2 + 27.4^2 - 24.3^2}{2 \times 34 \times 27.4}$ $\theta = 45^\circ$	1 Mark: B
64	In triangle ABC we are given two sides (BC and 10m) and two opposite angles (7° and 144°). This information requires the Sine rule.	1 Mark: D
65	$A = \frac{1}{2}ab \sin C$ $= \frac{1}{2} \times 15.9 \times 19.2 \times \sin 73$ $= 145.970358$ $\approx 146 \text{ m}^2$	1 Mark: B