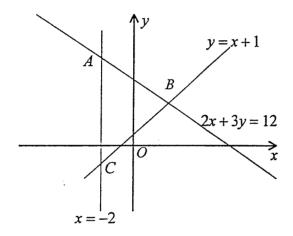
2 UNIT TEST NUMBER 1

1996

Coordinate Geometry - Plane Geometry - Trigonometry.

QUESTION 1. (9 marks)		Marks
(a)	Plot the points $A(2,-1)$, $B(5,3)$ and $C(0,4)$ on a number plane.	1
(b)	Find the equation of AB in general form.	2
(c)	Find the perpendicular distance from C to AB .	2
(d)	Find the area of the triangle ABC.	2
(e)	Find the coordinates of D so that $ABCD$ is a parallelogram.	2

QUESTION 2. (3 marks)

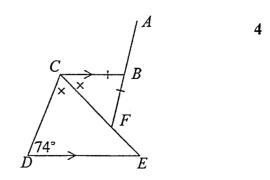


Write down the three inequations which simultaneously satisfy the region inside the triangle *ABC*.

QUESTION 3. (13 marks)

(a) In the diagram, CB //DE and BC = BF. CF bisects $\angle BCD$. $\angle CDE = 74^{\circ}$.

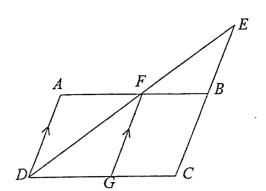
Find the size of $\angle ABC$, giving reasons.



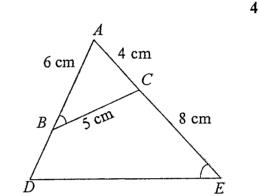
This paper is issued by National Educational Advancement Programs (NEAP) to individual schools copyright free for restricted use within that school only.

Marks 5

(b) ABCD is a parallelogram and FG //AD. DFE and CBE are straight lines.



- (i) Prove, using the properties of transversals cutting parallel lines, that $\frac{DG}{GC} = \frac{CB}{BE}$.
- (ii) Hence prove that $AF \times BE = FB \times CB$.
- (c) In the diagram, $\angle ABC = \angle AED$. AB = 6 cm, AC = 4 cm, CE = 8 cm, BC = 5 cm.



- (i) Copy the diagram onto your answer sheet.
- (ii) Prove $\triangle ABC /// \triangle ADE$.
- (iii) Find the lengths of BD and DE.

QUESTION 4. (15 marks)

- (a) Write down, in surd form, the values of: (i) cos 30° (ii) sec 45° (iii) cot 150°.
- (b) Write down all values of θ , $0^{\circ} \le \theta \le 360^{\circ}$, for which $\sin^2 \theta = \frac{3}{4}$.
- (c) Solve $3 \sin \theta = 2 \cos \theta$ for $0^{\circ} \le \theta \le 360^{\circ}$, to the nearest minute.
- (d) A point Q is 5.5 km south-west of a point P, and a point R is 8.2 km on a bearing of 147° from P.
 - (i) What is the size of $\angle QPR$?
 - (ii) Find the distance QR (to 1 decimal place).
 - (iii) Find the size of $\angle PQR$ (to nearest degree), and hence find the bearing of R from Q.

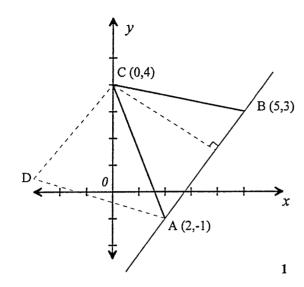
2 UNIT TEST NUMBER 1

1996

SUGGESTED SOLUTIONS

QUESTION 1

(a)



(b) Use $y - y_1 = m(x - x_1)$ to find equation of AB

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$= \frac{3 + 1}{5 - 2}$$
$$= \frac{4}{3}$$

1

$$y+1 = \frac{4}{3}(x-2)$$

$$3y + 3 = 4x - 8$$

$$4x - 3y - 11 = 0$$

(c) Perp Dist. =
$$\left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$

$$= \left| \frac{4 \times 0 - 3 \times 4 - 11}{\sqrt{4^2 + 3^2}} \right|$$

1

$$=\left|\frac{-23}{5}\right|$$

$$=\frac{23}{5}$$
 units.

1 Total = 2

(d) Length
$$AB = \sqrt{3^2 + 4^2}$$

Note: Using the distance formula $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

1

Area of
$$\triangle ABC = \frac{1}{2} \times \text{base} \times \text{perp. height}$$

$$=\frac{1}{2}\times5\times\frac{23}{5}$$

$$= 11.5$$
 units²

1 Total = 2

(e) Plot D from C: go down 4, and back 3, because A is down 4 and back 3 from B, DC//AB.

Therefore D is (-3,0).

1,1 Total = 2

Alternative solution:

Diagonals have the same midpoint.

Midpoint of AC is $\left(1, 1\frac{1}{2}\right)$. If D is (x, y),

Note: Using the midpoint formula midpoint = $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$.

midpoint of BD is $\left(\frac{x+5}{2}, \frac{y+3}{2}\right) = \left(1, 1\frac{1}{2}\right)$

$$\therefore x = -3, \quad y = 0.$$

QUESTION 2

The region inside the triangle ABC is given by

$$x > -2$$

1

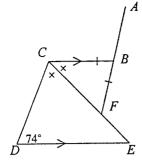
$$y > x + 1$$

1

$$2x + 3y < 12$$
.

QUESTION 3

(a)



$$\angle BCD = 180^{\circ} - \angle CDE$$
 (Cointerior angles are supplementary, *CB//DE*.)
= $180^{\circ} - 74^{\circ}$

= 106°

1

$$\angle BCE = \angle ECD$$
 (CF bisects $\angle BCD$)

$$\angle BCF = \frac{1}{2}(106^{\circ})$$

$$\angle BCF = 53^{\circ}$$

1

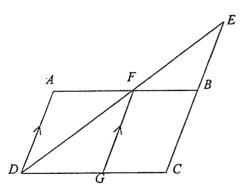
$$\angle BFC = 53^{\circ}$$
 (Angels opp. equal sides *BC*, *BF*.)

 $\angle ABC = 106^{\circ}$

(Exterior angle of $\triangle BCF$ equals sum of interior opposite angles.)

1 Total = 4

(b)



(i)
$$\frac{DG}{GC} = \frac{DF}{FE}$$
 (Intercepts on transversals cut by parallel lines are in the same ratio $AD // FG // EC$.) 2

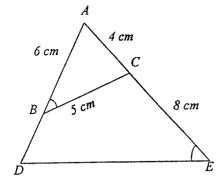
$$\frac{DF}{FE} = \frac{CB}{BE}$$
 (Intercepts on transversals cut by parallel lines are in the same ratio FB // DC.)

$$\therefore \frac{DG}{GC} = \frac{CB}{BE}.$$

- (ii) $\frac{DG}{GC} = \frac{AF}{FB}$ (Intercepts on transversals cut by parallel lines are in the same ratio $AD \parallel FG \parallel EC$.)
 - $\therefore \frac{AF}{FB} = \frac{CB}{BE} \quad \text{(from (i))}$
 - $\therefore AF \times BE = FB \times CB.$

Total = 2

(c) (i)



(ii) In $\triangle ABC$, $\triangle ADE$

 $\angle BAC = \angle EAD$ (Common.)

 $\angle ABC = \angle AED$ (Given.)

 $\therefore \triangle ABC \parallel \triangle ADE$ (2 angles equal.) 1 Total = 2

1

1

(iii) $\frac{AB}{AC} = \frac{AE}{AD}$ (If two triangles are similar, the ratio of corresponding sides is equal.)

AD = 8

 $\therefore BD = 2 \text{ cm}.$

 $\frac{AB}{BC} = \frac{AE}{DE}$ (If two triangles are similar, the ratio of corresponding $\frac{6}{5} = \frac{12}{12}$ sides is equal.)

 $\therefore DE = 10$ cm.

QUESTION 4

(a) (i)
$$\cos 30^{\circ} = \frac{\sqrt{3}}{2}$$
.

1

(ii)
$$\sec 45^{\circ} = \sqrt{2}$$
.

Note: $\sec 45^\circ = \frac{1}{\cos 45^\circ}$ and $\cos 45^\circ = \frac{1}{\sqrt{2}}$.

(iii)
$$\cot 150^\circ = \cot (180^\circ - 30^\circ)$$

 $=-\cot 30^{\circ}$

$$=-\sqrt{3}$$

1 Note: $\cot 30^{\circ} = \frac{1}{\tan 30^{\circ}}$ and $\tan 30^{\circ} = \frac{1}{\sqrt{3}}$

Total = 3

(b)
$$\sin^2\theta = \frac{3}{4}$$

$$\sin \theta = \pm \frac{\sqrt{3}}{2}$$

1

$$\therefore \theta = 60^{\circ}, 180^{\circ} - 60^{\circ}, 180^{\circ} + 60^{\circ}, 360^{\circ} - 60^{\circ}.$$

$$\theta = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}.$$

1,1 Total = 3

(c)
$$3\sin\theta = 2\cos\theta$$

Note: Divide both sides by 3 and by $\cos \theta$.

$$\tan \theta = \frac{2}{3}$$

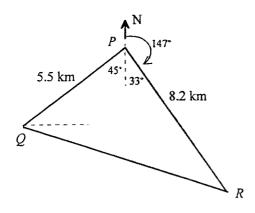
Note: $\frac{\sin \theta}{\cos \theta} = \tan \theta$.

$$\theta = 33^{\circ}41'$$
 or $180^{\circ} + 33^{\circ}41'$

$$\theta = 33^{\circ}41'$$
 or 213°41′.

1,1 Total = 3

(d)



(i)
$$\angle QPR = 78^{\circ}$$

1

(ii) To find QR use the cosine rule.

$$QR^2 = 5.5^2 + 8.2^2 - 2 \times 5.5 \times 8.2 \times \cos 78^\circ$$
 1

$$QR^2 = 78.736$$

$$QR = 8.9$$
 km (correct to 1d.p.)

Total = 2

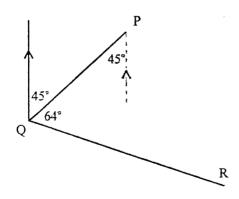
(iii) To find angle PQR use the sine rule.

$$\frac{\sin \angle PQR}{8.2} = \frac{\sin 78^{\circ}}{8.9}$$

1

$$\sin \angle PQR = \frac{8.2 \times \sin 78^{\circ}}{8.9}$$

 $\angle PQR = 64^{\circ}$ (correct to nearest degree) 1



Bearing of R from Q is $45^{\circ} + 64^{\circ}$, i.e. 109° 1