

HSC Trial Examination 2005

Mathematics Extension 2

This paper must be kept under strict security and may only be used on or after the morning of Monday 8 August, 2005 as specified in the NEAP Examination Timetable.

General Instructions

Reading time 5 minutes.

Working time 3 hours.

Board-approved calculators may be used.

Write using blue or black pen.

A table of standard integrals is provided at the back of this paper.

All necessary working should be shown in every question.

Total marks - 120

Attempt questions 1–8.
All questions are of equal value.

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2005 HSC Mathematics Extension 2 Trial Examination.

NEAP HSC Trial Exams are licensed to be photocopied and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be placed on the school intranet or otherwise reproduced or distributed. No Trial Examination or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, publishing agencies or websites without the express written consent of NEAP.

Copyright © 2005 NEAP ABILIDATES PO Box 214 St Leonards NSW 2065 Tel: (02) 9438 1386 Fax: (02) 9438 1385 TENMEZ.OLOSFEM

Total marks 120

Attempt Questions 1-8

All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

		Marks
Que	estion 1 (15 marks) Use a SEPARATE writing booklet.	
(a)	Evaluate $\int_0^1 \frac{2}{\sqrt{1+3x}} dx.$	2
(b)	By using integration by parts, find $\int x^2 \ln 2x \ dx$.	2
(c)	Evaluate $\int_0^{\frac{\pi}{6}} \sin^3 2x \ dx.$	3
(d)	Using $t = \tan \frac{x}{2}$, find $\int \frac{dx}{1 + \sin x}$.	4
(e)	(i) Find real constants A, B and C such that	2
	$\frac{x+4}{x(x^2+4)} = \frac{A}{x} + \frac{Bx+C}{x^2+4}.$	
	(ii) Hence find $\int \frac{x+4}{r(r^2+4)} dx$.	2

Copyright © 2005 NEAP

Question 2 (15 marks) Use a SEPARATE writing booklet.

(a) The diagram below shows the graph of y = f(x).

On separate diagrams, sketch the following, showing essential features.

(i)
$$y = \frac{1}{f(x)}$$

(ii)
$$y = f(x+2)$$

$$(iii) \quad y^2 = f(x)$$

(iv)
$$y = \ln f(x)$$

(b) Find the equation of the tangent to the curve $x^3 + y^3 - 3xy = 3$ at the point (1, 2).

(c)

The base of a certain solid is the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$.

Every cross-section perpendicular to the x-axis is an equilateral triangle. The shaded cross-section is thus an equilateral triangle with base PQ.

$$A = \sqrt{3}y^2.$$

(ii) Hence find the cross-sectional area as a function of
$$x$$
.

1

1

2

Question 3 (15 marks) Use a SEPARATE writing booklet.

Marks

(a) Show that $(1+i)^3 = 2(i-1)$.

1

(b) By evaluating, or otherwise, show that $\frac{1+2i}{3-4i} + \frac{2-i}{5i}$ is a real number.

2

- (c) Draw on one Argand diagram the three loci:
 - (i) |z-i|=1,

$$\arg(z-i)=\frac{\pi}{3},$$

$$|z-i|=|z-3i|.$$

(ii) Hence calculate the area of the intersection of the three loci:

1

$$|z-i| \le 1$$
, $\frac{\pi}{3} \le \arg(z-i) \le \frac{\pi}{2}$ and $|z-i| \le |z-3i|$.

(d) Let $p(z) = 2z^3 - 5z^2 + qz - 5$, where q is a real number.

2

(i) If p(1-2i) = 0, solve p(z) = 0.

_

(ii) Hence determine the value of q if p(1-2i) = 0.

1

(e) Let z be a complex number such that $z \neq 0$ and $z \neq 1$, and

$$\frac{z}{z} = -\frac{z-1}{z-1}$$

1

(i) Show that for any non-zero complex number z,

$$\arg\left(\frac{z}{z}\right) = 2\arg z$$
.

2

(ii) Let z be a complex number such that
$$z \neq 0$$
 and $z \neq 1$, and

$$\frac{z}{\overline{z}} = -\frac{z-1}{\overline{z-1}}.$$

Show that
$$\arg z = \arg(z-1) + \frac{\pi}{2}$$
 or $\arg z = \arg(z-1) - \frac{\pi}{2}$.

(iii) Hence sketch the locus of all points z that satisfy

$$\frac{z}{z} = -\frac{z-1}{z-1} .$$

2

1

Question 4 (15 marks) Use a SEPARATE writing booklet.

- (a) The point $P(\sqrt{2}\cos\theta, 2\sqrt{2}\sin\theta)$ lies on an ellipse.
 - (i) Find the equation of the tangent to the ellipse at P, where $0 < \theta < \frac{\pi}{2}$.
 - (ii) In the diagram below, the tangent to the ellipse at P intersects the x-axis at R and the y-axis at S.

- (a) Show that the area of $\triangle ORS$ is $\frac{4}{\sin 2\theta}$, where O is the origin.
- (β) Find the coordinates of P where this area is a minimum.
- (b) In the diagram below, X is the intersection of the altitudes of the triangle ABC. AP produced meets the circumscribed circle at S.

Copy the diagram onto your answer sheet.

(i) Show that $\angle RXA = \angle PSC$.

2

(ii) Hence, or otherwise, prove that XP = PS.

- 2.
- (c) Show that the equation $x^3 + 13x 16 = 0$ has exactly one real root, $x = \alpha$, and that $1 < \alpha < 2$.
 - 2
 - (ii) If $x = \beta$ is one of the non-real roots of the equation in part (i), show that
- 4

$$-1 < \text{Re}(\beta) < -\frac{1}{2}$$
 and $2\sqrt{2} < |\beta| < 4$.

2 2 2 2
2
5
2
4
1
2
2
1

Question 6 (15 marks) Use a SEPARATE writing booklet.

(a) (i) Show that
$$\int_0^a f(x)dx = \int_0^a f(a-x)dx.$$

(ii) Deduce that
$$\int_{0}^{\frac{\pi}{4}} \frac{1 - \sin 2x}{1 + \sin 2x} dx = \int_{0}^{\frac{\pi}{4}} \tan^{2}x dx$$
 2

(iii) Hence evaluate
$$\int_0^{\frac{\pi}{4}} \frac{1 - \sin 2x}{1 + \sin 2x} dx$$

(b) Particles of mass 3m kg and m kg are connected by a light inextensible string which passes over a smooth fixed pulley, the string hanging vertically on each side.

The particles are released from rest and move under gravity.

The air resistance on each particle is kv newtons when the speed of the particle is v m s⁻¹. Take the positive direction of motion as indicated by the arrow in the diagram below.

Let the tension in the string acting on the masses have a magnitude of T newtons.

(i) By resolving the forces on both particles, show that the equation of motion of the system is given by

$$\frac{dv}{dt} = \frac{mg - kv}{2m}.$$

- (ii) Hence find the terminal velocity of the system, stating your answer in terms of m, g and k.
- (iii) Prove that the time elapsed since the beginning of the motion is given by

$$t = \frac{2m}{k} \log_e \left(\frac{mg}{mg - kv} \right).$$

(iv) If the bodies have attained a speed equal to half the terminal speed, show that the time elapsed is equal to

$$\frac{V}{g}\log_e 4$$
,

where V is the terminal speed.

2

Question 7 (15 marks) Use a SEPARATE writing booklet.

- Marks
- (a) (i) With the aid of a diagram show that $\int_{1}^{\sqrt{u}} \frac{dx}{x} < \sqrt{u} 1 \text{ for } u > 1.$
- 1

(ii) Hence show that $0 < \ln u < 2(\sqrt{u} - 1)$, for u > 1.

2

(iii) Hence show that $\frac{\log u}{u} \to 0$, as $u \to \infty$.

1

(b) (i) Show that $\cos(A+B) + \cos(A-B) = 2\cos A\cos B$.

- 1
- (ii) Let α and β be the roots of the equation $z^2 \sin^2 \theta z \sin^2 \theta + 1 = 0$.
- 1

(a) Show that $\alpha + \beta = 2\cos\theta \csc\theta$.

1

(β) Show that $\alpha^2 + \beta^2 = 2\cos 2\theta \csc^2 \theta$.

ositive 4

1

- (γ) Hence by mathematical induction, or otherwise, prove that if n is a positive integer then
 - $\alpha^n + \beta^n = 2\cos n\theta \csc^n\theta$.
- (c) Let p and q be non-zero real numbers such that q(1+p+q) < 0.
 - (i) Show that the equation $x^2 + px + q = 0$ has exactly one real root in the interval 0 < x < 1.
 - (ii) Show that the equation $x^2 + px + q = 0$ has two distinct real roots, one positive and one negative.

Question 8 (15 marks) Use a SEPARATE writing booklet.

- (a) The line y = 2x + c cuts the ellipse $x^2 + \frac{y^2}{16} = 1$ at the two points $P(x_1, y_1)$ and $Q(x_2, y_2)$.
 - (i) Show that the length of the chord PQ is $\sqrt{5}|x_1-x_2|$.
 - (ii) Show that x_1 and x_2 are the roots of the quadratic equation 4

$$20x^2 + 4cx + (c^2 - 16) = 0$$

and hence find the two values of c such that the length of the chord PQ is $2\sqrt{2}$.

(iii) Let the two chords found in part (ii) above be P'Q' and P''Q''. P'Q'Q''P'' is a parallelogram as shown in the diagram below.

Find the area of the parallelogram P'Q'Q''P''.

- (b) (i) Show that $\sin \frac{\pi}{12} = \frac{\sqrt{6} \sqrt{2}}{4}$ and find a similar expression for $\cos \frac{\pi}{12}$.
 - (ii) Expand $(x-iy)^3$.
 - (iii) Hence or otherwise, find all real numbers x and y satisfying the following:

$$x^3 - 3xy^2 = 1$$
$$y^3 - 3x^2y = 1$$

Leave your answers in surd form.

End of paper

STANDARD INTEGRALS
$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = \frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

Note: $\ln x = \log_{e} x$, x > 0

HSC Trial Examination 2005

Mathematics Extension 2

Solutions and marking guidelines

NEAP HSC Trial Exams are licensed to be photocopied and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be placed on the school intranet or otherwise reproduced or distributed. No Trial Examination or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching collèges, tutors, parents, publishing agencies or websites without the express written consent of NEAP.

Copyright © 2005 NEAP ANAGENERAL PO Box 214 St Leonards, NSW 2065 Tel: (02) 9438 1386 Fax: (02) 9438 1385 Temmez, SEARCH

	Sample answer	Syllabus outcomes and marking guide
(a)	$\int_{0}^{1} \frac{2}{\sqrt{1+3x}} dx = \int_{0}^{1} 2(1+3x)^{-\frac{1}{2}} dx$	B8 • Correct solution
	$= \left[2 \times 2 \times \frac{1}{3} (1 + 3x)^{\frac{1}{2}}\right]_{0}^{1}$ $= \frac{4}{3} (\sqrt{4} - \sqrt{1})$ $= \frac{4}{3}$	Appropriate substitution done correctly. OR Correct modified primitive. OR Equivalent merit but fails to get the correct solution.
(b)	Let $u' = x^2$ and $v = \ln 2x$ $\int u^2 v dx = uv - \int uv' dx, \text{ so}$	E8 • Correct primitive
	$\int u^{2} dx = uv - \int uv^{2} dx, \text{ so}$ $\int x^{2} \ln 2x dx = \frac{1}{3}x^{3} \ln 2x - \int \frac{1}{3}x^{3} \times \frac{1}{x} dx$	Solution demonstrates understanding of the method of integration by parts but fails to get the correct primitive
	$= \frac{1}{3}x^3 \ln 2x - \frac{1}{3} \int x^2 dx$	
•	$= \frac{1}{3}x^3 \ln 2x - \frac{1}{9}x^3 + c$	
(c)	$\sin^3 2x = \sin^2 2x \times \sin 2x = (1 - \cos^2 2x)\sin 2x$	E8 • Correct solution
	Hence $\int_0^{\frac{\pi}{6}} \sin^3 2x dx = \int_0^{\frac{\pi}{6}} (1 - \cos^2 2x) \sin 2x dx$	Appropriate substitution done correctly. OR Correct modified primitive.
•	$= \frac{1}{2} \int_{\frac{1}{2}}^{x} (1 - u^2) du \text{where } u = \cos 2x$	OR • Equivalent merit but fails to get the correct solution
	$=\frac{1}{2}\left[u-\frac{u^3}{3}\right]_{\frac{1}{2}}^{\frac{1}{2}}$	• Recognises that $\sin^3 2x = (1 - \cos^2 2x)\sin 2x$
	$= \frac{1}{2} \left[\left(1 - \frac{1}{3} \right) - \left(\frac{1}{2} - \frac{1}{24} \right) \right]$	
	$=\frac{5}{48}$	

Question 1		(Continued)	
		. Sample answer	Syllabus outcomes and marking guide
(đ)	Let	$t = \tan \frac{x}{2}$	$ \begin{array}{c c} \hline 1+t^2 \end{array} $ • Correct primitive.,
	Then	$dt = \frac{1}{2}\sec^2\frac{x}{2}dx$	Appropriate substitution done correctly. OR
	so	$dx = \frac{2}{1+t^2}dt$	Correct modified primitive. OR.
	Also	$1 + \sin x = 1 + \frac{2t}{1 + t^2}$	Equivalent merit but fails to get the correct primitive.
		$=\frac{1+2t+t^2}{1+t^2}$	• Recognises that $1 + \sin x = \frac{(1+t)^2}{1+t^2}$ and the
		$=\frac{(1+t)^2}{1+t^2}$	$dx = \frac{2dt}{1+t^2} \text{ or equivalent merit } \dots$
	Hence	$\int \frac{dx}{1 + \sin x} = \int \frac{1 + t^2}{(1 + t)^2} \times \frac{2dt}{1 + t^2}$	• Recognises that $1 + \sin x = \frac{(1+t)^2}{1+t^2}$ or that $dx = \frac{2dt}{1+t^2}$
		$=2\int (1+t)^{-2}dt$	1+t2
		$= 2 \times \frac{-1}{1+t} + c = \frac{-2}{1+t} + c$	
		$=\frac{-2}{1+\tan\frac{x}{2}}+c$,
(e)	• • •	$+4 = A(x^2 + 4) + x(Bx + C)$ at $x = 0$	E8 • Correct solutions
		ien 4 = 4A	Applies method of partial fractions correct but fails to get all the correct answers
	Eq	unating coefficients of x^2 , $A + B = 0$ B = -1	
	Eq	parting coefficients of x , $C = 1$ ence $A = 1$, $B = -1$ and $C = 1$	
***************************************	(ii) ∫	$\frac{x+4}{x(x^2+4)}dx = \int \left(\frac{1}{x} + \frac{-x+1}{x^2+4}\right)dx$	B8 • Correct primitive
		$= \int \frac{1}{x} dx - \frac{1}{2} \int \frac{2x}{x^2 + 4} dx$	- $\int \frac{1}{x^2 + 4} dx$ - Makes reasonable progress after making the link to part (i) but fails to get the correct primitive.
		$= \ln x - \frac{1}{2} \ln (x^2 + 4) + \frac{1}{2}$	

Question 2		
	Sample answer	Syllabus outcomes and marking guide
(a) (i)	y 1	Correct graph
	$\begin{array}{c c} & & & \\ & O & 1 \\ & -1 & $	OR • Equivalent merit
(ii)	y h	B6 • Correct graph
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Correct shape, but asymptotes and intercepts are not indicated or are incorrect. OR Equivalent merit
(iii)	$ \begin{array}{c c} y \\ \sqrt{2} \\ \hline 1 \\ 0 \\ 1 \\ 3 \\ \hline -\sqrt{2} \end{array} $	Correct graph
(iv)		Correct graph

Que	estion 2	(Continued)		ŀ	
		Sample answer		ŀ	Syllabus outcomes and marking guide
(b)	Given x	$^3 + y^3 - 3xy = 3.$		E6	
		tiating both sides with respect t	to x,	Ŀ	Correct answer 3
		$v^2 \frac{dy}{dx} - \left(3x \frac{dy}{dx} + 3y\right) = 0$		•	Finds the correct derivative and finds a linear equation
	$\frac{dy}{dx}(3y)$	$(x^2 - 3x) = 3y - 3x^2$			Finds an equation with two basic errors . 1
		$\frac{dy}{dx} = \frac{3y - 3x^2}{3y^2 - 3x}$			
	_	pint (1, 2)			
	$\frac{dy}{dx} = \frac{6 - 12}{12}$	- <u>3</u> -3			
	$=\frac{3}{9}$				
	$=\frac{1}{3}$				
	Hence the	e equation of the tangent is:		}	
		$\frac{-2}{1} = \frac{1}{3}$			
	3y-	6 = x - 1			
	x - 3y + 5	5 = 0			
(c)	(i) Th	e base of the cross-section is 2)	<i>l</i> .	E7	
		nce $A = \frac{1}{2} \times (2y)^2 \times \sin 60^\circ$	\wedge		Correct answer
		$=\frac{1}{2}\times 4y^2\times\frac{\sqrt{3}}{2}$	2y		
		$= \sqrt{3}y^2$	$\frac{2}{2y}$		
	(ii) Her	$A = \frac{16\sqrt{3}}{25}(25 - x^2)$	·	E7 • F	inds the correct expression 1
	Sol	ving the ellipse for y,			
		$+\frac{y^2}{16}=1$			
		$\frac{y^2}{16} = 1 - \frac{x^2}{25}$			
		$\frac{y^2}{16} = \frac{25 - x^2}{25}$			
··		$\therefore y^2 = \frac{16}{25}(25 - x^2)$			

Question 2	(Continued)	1
	. Sample answer	Syllabus outcomes and marking guide
(iii)	$V = \int_{-5}^{5} \frac{16\sqrt{3}}{25} (25 - x^2) dx$	E7 • Correct answer
	$=\frac{32\sqrt{3}}{25}\int_{0}^{5}(25-x^{2})dx$	Correct method with no more than one error
	$=\frac{32\sqrt{3}}{25}\left[25x-\frac{x^3}{3}\right]_0^5$	
	$=\frac{32\sqrt{3}}{25}\left(125-\frac{125}{3}\right)$	
	$=\frac{32\sqrt{3}}{25}\times2\times\frac{125}{3}$	
	$=\frac{320\sqrt{3}}{3}u^3$	

Que	Section 3	
<u></u>	Sample answer	Syllabus outcomes and marking guide
(a)	$(1+i)^3 = (1+i)(1+i)^2$	E3 Correctly shows the result
	= (1+i)(2i)	Sold of the local country of t
	$=2(i-1), \text{ since } i^2=-1$	
(b)	$\frac{1+2i}{3-4i} \times \frac{3+4i}{3+4i} + \frac{2-i}{5i} \times \frac{-i}{-i} = \frac{(1+2i)(3+4i)}{25} - \frac{1+2i}{5}$	E3 Correctly shows the result
	$=\frac{1+2i}{25}(3+4i-5)$	Substantially correct
	$=\frac{1+2i}{25}(-2+4i)$	
	$=\frac{2(1+2i)(-1+2i)}{25}$	
	$=\frac{2\times-5}{25}$	
	$=-\frac{2}{5}$, which is a real number	
(c)	(i) y	E3 • Correct diagrams
	2 60°	One diagram incorrect.
	1 1 -	Two diagrams wrong
	(ii) $\operatorname{area} = \frac{1}{2} \times 1 \times \frac{\pi}{6}$	E3 • Correct solution
	$=\frac{\pi}{12}$ units ²	
d)	(i) $p(z) = 2z^3 - 5z^2 + qz - 5$	E4
	Since $p(1-2i) = 0$, then $p(1+2i) = 0$	Correct solutions
	[conjugate root theorem]	• Obtains the conjugate solution $1 + 2i$ 1
	Hence $1 + 2i + 1 + 2i + \alpha = \frac{5}{2}$ [sum of roots]	
	$\alpha = \frac{1}{2}$	
	Hence the solutions of $p(z) = 0$ are	
	$z = 1 + 2i$, $1 - 2i$ or $\frac{1}{2}$.	
	(ii) $p\left(\frac{1}{2}\right) = 0$ from part (i).	E4 Correct value for q
	Hence $2\left(\frac{1}{2}\right)^3 - 5\left(\frac{1}{2}\right)^2 + q \times \frac{1}{2} - 5 = 0$	
	$\therefore \frac{1}{4} - \frac{5}{4} + \frac{q}{2} - 5 = 0$	
	$\therefore \frac{q}{2} = 6$	
	$\therefore q = 12$	

Question	n 3	(Continued)		
		Sample answer		Syllabus outcomes and marking guide
(e)	(i)	$\arg\left(\frac{z}{z}\right) = \arg z - \arg\left(\frac{z}{z}\right)$	B3	Correctly shows expression
		$= \arg z - (-\arg z)$ $= 2\arg z$		
((ii)	Given $\frac{z}{z} = -\frac{z-1}{z-1}$	E3	Correctly shows both expressions 2
		$\arg\left(\frac{z}{z}\right) = \arg\left(-\frac{z-1}{z-1}\right)$ $= \arg\left(-1\right) + \arg\left(\frac{z-1}{z-1}\right)$		Makes substantial progress. OR Shows a link with (i)
		$2 - 1$ $2 \operatorname{arg} z = \pi + 2 \operatorname{arg} (z - 1) \text{ or } 2 \operatorname{arg} z = -\pi + 2 \operatorname{arg} (z - 1)$ $\operatorname{arg} z = \operatorname{arg} (z - 1) + \frac{\pi}{2} \text{ or } \operatorname{arg} z = \operatorname{arg} (z - 1) - \frac{\pi}{2}$		
(i	iii)	$\arg z - \arg(z - 1) = \frac{\pi}{2} \text{ or } -\frac{\pi}{2}$	E3	Correct diagram of the locus 2
		$0 \qquad \frac{1}{2} \qquad 1$	•	Draws a semicircle. OR Substantial progress. OR Fails to exclude the points $z = 0$, 1 from the correct diagram
		By the converse of the angle-in-a-semicircle theorem, this is the circle whose diameter is the interval joining $z=0$ and $z=1$.	,	
		The points $z = 0$ and $z = 1$, however, are secluded, because $arg 0$ is undefined.		

Ques	tion 4		
		Sample answer	Syllabus outcomes and marking guide
(a)	(i)	$x = \sqrt{2}\cos\theta$ and $y = 2\sqrt{2}\sin\theta$	E4
		Differentiating, $\frac{dx}{d\theta} = -\sqrt{2}\sin\theta$ and $\frac{dy}{d\theta} = 2\sqrt{2}\cos\theta$	Any form of the equation
		Hence $\frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx}$	equation
		$=2\sqrt{2}\cos\theta\times\frac{1}{-\sqrt{2}\sin\theta}$,
		$=\frac{-2\cos\theta}{\sin\theta}$	
		\therefore Equation of the tangent is given by:	
		$y - 2\sqrt{2}\sin\theta = \frac{-2}{\tan\theta}(x - \sqrt{2}\cos\theta)$	
		$\sin\theta(y-2\sqrt{2}\sin\theta) = -2\cos\theta(x-\sqrt{2}\cos\theta)$	
		$y\sin\theta - 2\sqrt{2}\sin^2\theta = -2x\cos\theta + 2\sqrt{2}\cos^2\theta$	
		$2x\cos\theta + y\sin\theta = 2\sqrt{2}(\sin^2\theta + \cos^2\theta)$	-
		$2x\cos\theta + y\sin\theta = 2\sqrt{2}$	
		$\frac{x\cos\theta}{\sqrt{2}} + \frac{y\sin\theta}{2\sqrt{2}} = 1$	
	(ii)	(a) S is the y-intercept, i.e. $\left(0, \frac{2\sqrt{2}}{\sin \theta}\right)$,	E4 • Correct solution
		and R is the x-intercept, i.e. $\left(\frac{\sqrt{2}}{\cos \theta}, 0\right)$.	
		Area of $\triangle ORS = \frac{1}{2} \times \frac{\sqrt{2}}{\cos \theta} \times \frac{2\sqrt{2}}{\sin \theta}$	
		$=\frac{4}{2\sin\theta\cos\theta}$,
		$=\frac{4}{\sin 2\theta}$	
		(β) The minimum of the expression	E4
		$\frac{4}{\sin 2\theta}$ occurs when $\sin 2\theta = 1$,	• Correct solution
		where $0 < \theta < \frac{\pi}{2}$	• Correctly obtains the area but unable to find P
		That is, $2\theta = \frac{\pi}{2}$	
		$\theta = \frac{\pi}{4}$	-
		Hence the area is a maximum when	
		$P = \left(\sqrt{2}\cos\frac{\pi}{4}, 2\sqrt{2}\sin\theta\right)$	
		$= \left(\sqrt{2} \times \frac{1}{\sqrt{2}}, 2\sqrt{2} \times \frac{1}{\sqrt{2}}\right)$	
		= (1, 2)	

Quest	ion 4	(Continued)	
		Sample answer	Syllabus outcomes and marking guide
(b)	(i)	R a Q C	PE3 • Valid proof
		Let $\angle BAS = \alpha$	
		Then $\angle BCS = \alpha$ (angles on the same are BS)	,
•		Hence $\angle RXA = \angle PSC = 90^{\circ} - \alpha$ (angle sums of $\triangle RXA$ and $\triangle PSC$.	
	(ii)	$\angle CXP = 90^{\circ} - \alpha$ (vertically opposite angles) Hence $\triangle XPC = \triangle SPC$ (AAS congruent test) so $XP = SP$ (matching sides of congruent triangles) $\angle RXA = \angle PXC$ (vertically opposite angles are equal). $\therefore \angle PXC = \angle PSC$ $\therefore \triangle XPC = \triangle SPC$ (AAS test)	PE3 Valid proof. 2 • Substantially correct. 1
د		: XP = PS (corresponding sides of congruent triangles)	
(c)	(i)	Let $P(x) = x^3 + 13x - 16 = 0$ $P'(x) = 3x^2 + 13$ Now $P'(x) > 0$ for all x . \therefore It is always increasing. $\therefore P(x) = 0$ has only one root. P(1) = -2 and $P(2) = 8 + 26 - 16= 18\therefore The root \alpha lies in the interval (1, 2), i.e. 1 < \alpha < 2.$	E4 • Valid proof

Question 4	(Continued)	
	Sample answer	Syllabus outcomes and marking guide
(ii)	If β is a non-real root of $P(x) = 0$, then by the conjugate root theorem $\overline{\beta}$ is also a root of $P(x) = 0$.	B4 • Is able to obtain both expressions correctly
	$\overline{\beta}$ is also a root of $P(x) = 0$. Now $\alpha + \beta + \overline{\beta} = 0$ (sum of roots) $\alpha + 2\operatorname{Re}(\beta) = 0 (\operatorname{since } \beta + \overline{\beta} = 2\operatorname{Re}(\beta))$ $\operatorname{Re}(\beta) = -\frac{\alpha}{2}$ Now $1 < \alpha < 2$ $\operatorname{so} \frac{1}{2} < \frac{\alpha}{2} < 1$, $-\frac{1}{2} > -\frac{\alpha}{2} > -1$ $\operatorname{or} -1 < -\frac{\alpha}{2} < -\frac{1}{2}$ Hence $-1 < \operatorname{Re}(\beta) < -\frac{1}{2}$ Also $\alpha \times \beta \times \overline{\beta} = 16 (\operatorname{product of roots})$ $\therefore \alpha \beta ^2 = 16 (\operatorname{since } \beta \overline{\beta} = \beta ^2)$ $\alpha = \frac{16}{ \beta ^2}$ Now $1 < \alpha < 2$ $\operatorname{so} 1 < \frac{16}{ \beta ^2} < 2$ $\frac{1}{16} < \frac{1}{ \beta ^2} < \frac{1}{8}$ $16 > \beta ^2 > 8$ $8 < \beta ^2 < 16$	Obtains one correctly and makes progress the other One answer correct

Question 5		
	Sample answer	Syllabus outcomes and marking guide
(ii)	Choose the first 5 in $\binom{12}{5}$ ways, then the remaining 5 in $\binom{7}{5}$ ways. But we have overcounted by a factor of 2, since the two terms could be chosen in either order. Hence number of ways = $\frac{1}{2} \times \binom{12}{5} \times \binom{7}{5}$ = 8316 If Bill, Paul and Patrick are in the same team, then the remainder of their team can be chosen in $\binom{9}{2}$ ways, the other team in $\binom{7}{5}$ ways. Hence number of ways = $\binom{9}{2} \times \binom{7}{5}$ = 756 Hence probability = $\frac{756}{8316} = \frac{1}{11}$ Alternative solution: P(Bill is chosen) = $\frac{5}{6}$ If Bill is chosen, P(Paul is in same team) = $\frac{4}{11}$ If Bill and Paul are in the team, P(Patrick is in same team) = $\frac{3}{10}$ Hence probability = $\frac{5}{6} \times \frac{4}{11} \times \frac{3}{10}$	PE3 • Correct answer
(b) (i)	$y = \frac{1}{11}$ $y = e^{x}$ $y = e^{x}$ $y = y = 1$	E7 Correct region sketched

(ii)

(Continued)

Sample answer

A shell of thickness Δy , height 1-x, radius y can be approximated by the rectangular prisin below.

Let ΔV be the volume of this shell.

$$\Delta V \approx 2\pi y(1-x)\Delta y$$

$$V = \lim_{\Delta y \to 0} \sum_{y=1}^{e} 2\pi y (1-x) \Delta y$$

$$=2\pi\int_{1}^{\varepsilon}y(1-\ln y)dy$$

[use integration by parts]

$$= 2\pi \left[\frac{y^2}{2} (1 - \ln y) \right]_1^e - \int_1^e \frac{y^2}{2} \times \frac{-1}{y} dy$$

$$= 2\pi \left[-\frac{1}{2} + \int_1^e \frac{y}{2} dy \right]$$

$$= 2\pi \left[-\frac{1}{2} + \frac{e^2}{4} - \frac{1}{4} \right]$$

$$= \frac{\pi}{2} (e^2 - 3), \text{ as required}$$

Syllabus outcomes and marking guide

- Correct solution..... 4
- $y(1 \ln y)dy$ or
- Writes down an integral for the volume using the correct height and radius. 2
- Finds the height or radius of the shell.... 1

(c) (i)

· Correct diagram with all the forces. 1

Mg

	200 4 10	1
Question 5	(Continued)	
	Sample answer	Syllabus outcomes and marking guide
(ii)	Let the radius be r metres, and the angular veloce ω radians per second.	eity be E5 Correct expression for S
	Resolving vertically: $T\cos\theta - Mg = 0$ $T\cos\theta = Mg \dots (1)$ Resolving horizontally: $T\sin\theta = M\omega^2 r \dots (2)$ $(2) + (1) \tan\theta = \frac{\omega^2 r}{g}$ $\left[\omega = \frac{2\pi}{S}\right] \tan\theta = \frac{4\pi^2 \sin\theta}{g \sin\theta}$ $\left[r = \sin\theta\right] S^2 = \frac{4\pi^2 \sin\theta}{g \tan\theta}$ $= \frac{4\pi^2 \cos\theta}{g}$ $\therefore S = 2\pi \sqrt{\frac{\cos\theta}{g}} \text{since } S \text{ is posite}$	• Attempts to resolve forces or equivalent merit.
(iii).	The smallest period will occur when $T = 5Mg$. Hence from part (ii), $T\cos\theta = Mg$ $T \le 5Mg \text{ newtons}$ $\therefore T\cos\theta = Mg \qquad \text{[from part (ii)]}$ $\therefore Mg \ T\cos\theta \le 5Mg \cos\theta$ i.e. $Mg \le 5Mg \cos\theta$ $\therefore \cos\theta \ge \frac{1}{5} \qquad \left[\frac{1}{5} \le \cos\theta < 1\right]$ From part (ii) $S = 2\pi \sqrt{\frac{\cos\theta}{g}}$ Hence the smallest period is $S = 2\pi \sqrt{\frac{1}{5}g}$	

Question 6	Sample answer	Syllabus outcomes and marking guide
(a) (i)	Sample answer We are required to show that $\int_0^a f(x)dx = \int_0^a f(a-x)dx$ Let $u = a - x$ Then $du = -dx$ Hence $\int_0^a f(a-x)dx = -\int_a^0 f(u)du$ $= \int_0^a f(u)du$ $= \int_0^a f(x)dx, \text{ as required}$ $\int_0^{\frac{\pi}{4}} \frac{1 - \sin 2x}{1 + \sin 2x} dx = \int_0^{\frac{\pi}{4}} \frac{1 - \sin 2\left(\frac{\pi}{4} - x\right)}{1 + \sin\left(\frac{\pi}{2} - 2x\right)} dx$ $= \int_0^{\frac{\pi}{4}} \frac{1 - \cos 2x}{1 + \cos 2x} dx$ $= \int_0^{\frac{\pi}{4}} \frac{1 - \cos 2x}{1 + \cos 2x} dx$ $= \int_0^{\frac{\pi}{4}} \frac{1 - \cos 2x}{1 + \cos 2x} dx$	F8
(iii)	$= \int_{0}^{\frac{\pi}{2}} \frac{2\sin^{2}x}{2\cos^{2}x} dx$ $= \int_{0}^{\frac{\pi}{4}} \tan^{2}x dx$ $= \int_{0}^{\frac{\pi}{4}} \tan^{2}x dx$ $= \left[\tan x - x\right]_{0}^{\frac{\pi}{4}}$ $= \tan \frac{\pi}{4} - \frac{\pi}{4} - (\tan 0 - 0)$ $= 1 - \frac{\pi}{4}$	E8 Correctly evaluates the integral Correctly substitutes into a primitive. OR Correct primitive and a mistake in the substitution

Question 6	(Continued)	
	Sample answer	Syllabus outcomes and marking guide
(b) (i)	At P , $m\ddot{x} = T - kv - mg$ (1) At Q , $3m\ddot{x} = -T + 3mg - kv$ (2)	E5
	Adding (1) and (2):	• Obtains the correct forces at P and Q 1
	$4m\ddot{x} = 2mg - 2kv$	
	$\ddot{x} = \frac{mg - kv}{2m}$	
	$\frac{dv}{dt} = \frac{mg - kv}{2m}$ $P = T$	
(ii)	Let the terminal velocity be ν_n	B5
(11)	For terminal velocity:	• Correct answer
	Let $\frac{du}{dt} \to 0$	
	i.e. $\frac{mg - kv}{2m} = 0$	
	mg = kv	
	$v_T = \frac{mg}{k}$ (where $v_T = V$)	
	$\therefore V = \frac{mg}{k}$	
(iii)	From (1): $\frac{dt}{dv} = \frac{2m}{mg - kv}$	E5 • Correct expression
	$t = \frac{-2m}{k} \ln(mg - kv) + c$	Substantially correct
	When $t = 0$, $v = 0$.	Makes some progress
	$\therefore 0 = \frac{-2m}{k} \ln mg + c$	
	$c = \frac{2m}{k} \ln mg$	·
	$t = \frac{-2m}{k} \ln(mg - kv) + \frac{2m}{k} \ln mg$	
	$t = \frac{2m}{k} \ln \frac{mg}{mg - kv}$	1

Question 6	(Continued)	ľ
	Sample answer	Syllabus outcomes and marking guide
(iv)	Put v equal to half the terminal velocity.	B5
	That is, $v = \frac{mg}{2k}$.	• Correct answer
	2R	Substantially correct
	Then $t = \frac{2m}{k} \ln \frac{mg}{mg - k \times \frac{mg}{2k}}$	Makes some progress
	$=\frac{2m\ln\frac{mg}{k}\ln\frac{mg}{mg-\frac{1}{2}mg}$	
	$=\frac{2m}{k}\ln 2$	
	$=\frac{2v_T}{g}\ln 2$	
· · · · · · · · · · · · · · · · · · ·	$=\frac{\gamma}{g}\ln 4$	

	tion 7	Sample answer	Cally You and You are
(a)	(i)	$\int_{1}^{\sqrt{u}} \frac{dx}{x} = \text{shaded area}$	Syllabus outcomes and marking guide PE3, H8 Correctly shows the inequality
		4 area of upper rectangle at $x = 1$ $= (\sqrt{u} - 1) \times 1$ $= \sqrt{u} - 1$	
	(ii)	Clearly $\int_{1}^{\sqrt{u}} \frac{dx}{x} > 0$, since the curve is above the x-axis.	
		Hence $0 < \int_{1}^{\sqrt{u}} \frac{dx}{x} < \sqrt{u} - 1$ $0 < [\ln x]_{1}^{\sqrt{u}} < \sqrt{u} - 1$ $0 < \ln(\sqrt{u}) < \sqrt{u} - 1 \qquad \left[\ln \sqrt{u} = \frac{1}{2}\ln u\right]$	Substantial progress linking from part (i) bu fails to complete the proof
		$0 < \frac{1}{2} \ln u < \sqrt{u} - 1$ $0 < \ln u < 2(\sqrt{u} - 1), \text{ as required}$	
	(iii)	Since $0 < \ln u < 2(\sqrt{u-1})$, $\therefore 0 < \frac{\log u}{u} < \frac{2(\sqrt{u-1})}{u}$	PE3, H8 • Correctly shows the limit
		Now $\frac{2(\sqrt{u-1})}{u} \to 0$ as $u \to \infty$. Hence $\frac{\log u}{u} \to 0$ as $v \to \infty$.	
		That is $\lim_{u \to \infty} \frac{\log u}{u} = 0.$	
b)	(i)	cos(A + B) + cos(A - B) $= cosA cosB - sinA sinB + cosA cosB + sinA sinB$ $= 2 cosA cosB$	PE3 Correctly shows expression1

HSC Mathematics Extension 2 Trial Examination Solutions and marking guidelines

Question 7	(Continued)	
	Sample answer	Syllabus outcomes and marking guide
(ii)	$(\alpha) \ \alpha + \beta = \frac{\sin 2\theta}{\sin^2 \theta}$	• A correct expression for $\alpha + \beta$
	$= \frac{2\sin\theta\cos\theta}{\sin^2\theta}$	
	$= \frac{2\cos\theta}{\sin\theta}$	
	$=2\cos\theta\csc\theta$	
	(β) α2 + β2 = (α + β)2 - 2 α β $= (2 cos θ cosec θ)2 - 2 cosec2 θ$ $= 2 cos2 θ cosec2 θ - 2 cosec2 θ$ $= (2 cos2 θ - 1) cosec2 θ$ $= cos2 θ cosec2 θ$	E4 • A correct expression for $\alpha^2 + \beta^2 \dots$
	(y) From (ii) and (iii), the formula is true for $n = 1$ and $n = 2$.	HE2, E4 • Proves the inductive step
	ne it is true for all n in the interval $2 < n \le k$. is, $\alpha^k + \beta^k = 2 \cos k \theta \csc^k \theta$ for $2 < n \le k$.	Makes considerable progress in proving the inductive step, but fails to finish
	have the result true for $n = k + 1$. s, we have $\alpha^{k+1} + \beta^{k+1} = 2\cos(k+1)\theta \csc^{k+1}\theta$	• Shows the identity $(\alpha^{k+1} + \beta^{k+1})\sin^2\theta$ $-(\alpha^k + \beta^k)\sin^2\theta + (\alpha^{k+1} + \beta^{k+1})$:
	ply both sides of $z^2 \sin^2 \theta - z \sin^2 \theta + 1 = 0$ by substitute α and β , and then add.	• Attempts to relate the case $n = k + 1$ to the
$(\alpha^{k+}$	$(1 + \beta^{k+1})\sin^2\theta - (\alpha^k + \beta^k)\sin^2\theta + \alpha^{k-1} + \beta^{k-1} = 0$	case $n = k$.
so (a	$k+1+\beta^{k+1})\sin^2\theta$	OR • multiplies by z^{k-1} but fails to continue
	$= (2\cos k\theta \csc^k\theta)\sin 2\theta - 2\cos(k-1)\theta \csc^{k-1}\theta$	
	$= 4\cos k\theta\cos\theta\csc^{k-1}\theta - 2\cos(k-1)\theta\csc^{k-1}\theta$	
$so \alpha^k$	$+1+\beta^{k+1}$	
	$=2\csc^{k+1}\theta[2\cos k\theta\cos\theta-\cos(k-1)\theta]$	
	$= 2\csc^{k+1}\theta[\cos(k+1)\theta + \cos(k-1)\theta - \cos(k-1)\theta]$ from part (i)	
	$=2\csc^{k+1}\theta\cos(k+1)\theta$	
So by	the formula is true for $n = k + 1$. the principle of mathematical induction $\beta^n = 2 \csc^n \theta \cos n \theta$ for integers $n \ge 1$	
		E4
c) (i)	Let $u(x) = x^2 + px + q$ Then $u(0) \times u(1) = q(1 + p + q)$ < 0	Correctly shows the result
	Hence $u(x)$, being a quadratic, has exactly one zero between 0 and 1.	

Question 7	(Continued) Sample answer		Syllabus outcomes and marking guide
(ii)	Let $v(x) = \frac{1}{x+2} + \frac{p}{x+1} + \frac{q}{x}$, where	E4	Correctly shows both results3
	$x \neq 0$, $x \neq -1$ and $x \neq -2$. Put $v(x) = 0$.	•	Correctly shows one result and substantial progress with the other
	Then $x(x+1) + px(x+2) + q(x+1)(x+2) = 0$ $\therefore x^2(1+p+q) + x(1+2p+3q) + 2q = 0$	•	Correct expression for the discriminant or equivalent merit
	Now product of roots $= \frac{2q}{1+p+q}$ $= \frac{2}{(1+p+q)^2} \times q(1+p+q)$ $< 0, \text{ since } q(1+p+q) < 0$		
	Hence $v(x)$ has two roots, one positive and one negative.		
	Note: Once the product is negative, there is no need to prove separately that the roots are distinct. (Note also that if the roots are complex, then they are conjugates, and $(a+ib)(a-ib) = a^2 + b^2 > 0$.)		

Questi	ion 8	
	Sample answer	Syllabus outcomes and marking guide
(a)	(i) $PQ^{2} = (x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}$ $= (x_{1} - x_{2})^{2} + [(2x_{1} + c) - (2x_{2})^{2}]$	E4 • Correct answer
	$= (x_1 - x_2)^2 + [2(x_1 - x_2)]^2$	Substantially correct. OR
	$=5(x_1-x_2)^2$	A correct approach
	Hence $PQ = \sqrt{5} \times x_1 - x_2 $	
	(ii) $16x^2 + y^2 = 16$ (1) y = 2x + c (2)	E4 • Correct solution
	Substituting (2) into (1),	• Able to obtain the equation but not the correct values of c
	$16x^{2} + 4x^{2} + 4cx + c^{2} = 6$ $20x^{2} + 4cx + c^{2} - 16 = 0$	Able to make substantial progress
	Hence $x_1 + x_2 = -\frac{4c}{20}$	Able to make some progress
	= - <u>c</u> 5	
	and $x_1 x_2 = \frac{c^2 - 16}{20}$	
	Hence $(x_1 - x_2)^2 = (x_1 + x_2)^2 - 4x_1x_2$	
	$=\frac{c^2}{25} - \frac{c^2 - 16}{5}$	
	$=\frac{c^2-5c^2-80}{25}$	
	$=\frac{4(20-c^2)}{25}$	
	Put $PQ = 2\sqrt{2}$	
	$PQ^2 = 8$,
	$5 \times \frac{4(20 - c^2)}{25} = 8$	
	$20 - c^2 = 10$	1.
	$10 = c^2$	
	$c = \sqrt{10} \text{ or } -\sqrt{10}$	
	Alternative solution:	
	To find x_1 and x_2 , solve simultaneously $x^2 + \frac{y^2}{16} = 1 \qquad \dots (1)$	
	and $y = 2x + c$ (2)	
	Substitute (2) into (1):	
	$x^2 + \frac{(2x+c)^2}{16} = 1$	
	$16x^2 + 4x^2 + 4xc + c^2 = 16$, ,
	Giving $20x^2 + 4xc + (c^2 - 16) = 0$ (A	A)

Question 8	(Continued)	
	Sample answer	Syllabus outcomes and marking guide
	Solving (A) gives x_1 and x_2 :	
	$x = \frac{-4c \pm \sqrt{16c^2 - 80(c^2 - 16)}}{40}$	
	$ x_1 - x_2 = \left \frac{-4c + \sqrt{1280 - 64c^2}}{40} \right $	
	$-\frac{-4c-\sqrt{1280-64c^2}}{40}$	
	$= \left \frac{\sqrt{1280 - 64c^2}}{20} \right $	
	Let $\sqrt{5} \times \frac{\sqrt{1280 - 64c^2}}{20} = 2\sqrt{2}$	
	$\sqrt{5} \times \frac{8\sqrt{20 - c^2}}{20} = 2\sqrt{2}$	
	$\sqrt{5} \times \sqrt{20 - c^2} = 5\sqrt{2}$	
	$5(20 - c^2) = 50$	
	$20 - c^2 = 10$	
	$c^2 = 10$	
	$c = \pm \sqrt{10}$	
(iii)	The area of the parallelogram $P'Q'Q''P''$ is given by lb where $l=P'Q'$ and b is the perpendicular distance between $P'Q'$ and $Q''P''$.	E4 Correct answer 2
	Now, $l = 2\sqrt{2}$ (given)	• Uses a valid method 1
	and $b = \left \frac{2 \times 0 - 1 \times -\sqrt{10} - \sqrt{10}}{\sqrt{(2)^2 + (1)^2}} \right $	
	$=\frac{2\sqrt{10}}{\sqrt{5}}$	
	$=2\sqrt{2}$.	
	$\therefore \text{ Area} = (2\sqrt{2})^2$	-
	$= 8 \text{ m}^2$	

Quest	ion 8	(Continued)	}
		Sample answer	Syllabus outcomes and marking guide
(b)	(i)	$\sin\frac{\pi}{12} = \sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right)$	PE2 • Correct expressions
		$=\sin\frac{\pi}{3}\times\cos\frac{\pi}{4}-\sin\frac{\pi}{4}\times\cos\frac{\pi}{3}$	• One correct
		$= \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \times \frac{1}{2}$	
		$=\frac{\sqrt{3}-1}{2\sqrt{2}}$	
		$=\frac{\sqrt{6}-\sqrt{2}}{4}$	
		Similarly $\cos \frac{\pi}{12} = \cos \frac{\pi}{3} \times \cos \frac{\pi}{4} - \sin \frac{\pi}{3} \times \sin \frac{\pi}{4}$	
		$=\frac{1}{2}\times\frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2}\times\frac{1}{\sqrt{2}}$	
		$=\frac{1+\sqrt{3}}{2\sqrt{2}}$	
		$=\frac{\sqrt{2}+\sqrt{6}}{2}$	
	(ii)	$(x-iy)^3 = x^3 - 3x^2(iy) + 3x(iy)^2 - (iy)^3$	E3
		$= x^3 - 3ix^2y - 3xy^2 + iy^3$	Correct expansion
		$=x^3-3xy^2+i(y^3-3x^2y)$	

Question 8	(Continued)	
	Sample answer	Syllabus outcomes and marking guide
(iii)	By part (ii), $(x-iy)^3 = x^3 - 3y^2 + i(y^3 - 3x^2y)$	• Finds all the solutions 4
	= 1 + i, by the given identities,	
	$= \sqrt{2}\operatorname{cis}\frac{\pi}{4}, \ \sqrt{2}\operatorname{cis}\frac{9\pi}{4} \ \text{or} \ \sqrt{2}\operatorname{cis}\frac{17\pi}{4}$	• Finds two of the solutions
	$\therefore x - iy = 2^{\frac{1}{6}} \text{cis} \frac{\pi}{19}, \ 2^{\frac{1}{6}} \text{cis} \frac{3\pi}{4} \text{ or } 2^{\frac{1}{6}} \text{cis} \frac{17\pi}{19}$	Makes substantial progress
	12 4 12	Makes some progress
	We now apply part (i).	
	In the first case, $x - iy = 2^{\frac{1}{6}} \operatorname{cis} \frac{\pi}{12}$	
	$=2^{\frac{1}{6}}\left(\frac{\sqrt{6}+\sqrt{2}}{4}+i\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)\right)$	
	so $x = 2^{\frac{1}{6}} \left(\frac{\sqrt{6} + \sqrt{2}}{4} \right)$ and $y = -2^{\frac{1}{6}} \left(\frac{\sqrt{6} - \sqrt{2}}{4} \right)$.	
	In the second case, $x - iy = 2^{\frac{1}{6}} \cos \frac{3\pi}{4}$	
	$=2^{\frac{1}{6}}\cos\left(\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\right).$	
	$\therefore x = -2^{\frac{1}{6}} \times \frac{1}{\sqrt{2}} \qquad y = -2^{\frac{1}{6}} \times \frac{1}{\sqrt{2}}$	
	In the third case, $x = -2^{-\frac{1}{3}}$ and $y = -2^{-\frac{1}{3}}$	
	$x - iy = 2^{\frac{1}{6}} \operatorname{cis} \frac{17\pi}{12}$	
	$=2^{\frac{1}{6}}\operatorname{cis}\left(\frac{7\pi}{12}\right)$	
	$=2^{\frac{1}{6}}\left(\cos\left(\frac{7\pi}{12}\right)+i\sin\left(\frac{7\pi}{12}\right)\right)$	
	$=2^{\frac{1}{6}}\left(\cos\frac{7\pi}{12}-i\sin\frac{7\pi}{12}\right)$	
	$=2^{\frac{1}{6}}\left(-\cos\frac{5\pi}{12}-i\sin\frac{5\pi}{12}\right)$	
•	$=2^{\frac{1}{6}}\left(-\cos\left(\frac{\pi}{2}-\frac{\pi}{12}\right)-i\sin\left(\frac{\pi}{2}-\frac{\pi}{12}\right)\right)$	
	$=2^{\frac{1}{6}}\left(-\sin\frac{\pi}{12}-i\cos\frac{\pi}{12}\right)$	
	$=2^{\frac{1}{6}}\left(-\frac{\sqrt{6}-\sqrt{2}}{4}-i\times\frac{\sqrt{6}-\sqrt{2}}{4}\right)$	
	so $x = -2^{\frac{1}{6}} \left(\frac{\sqrt{6} - \sqrt{2}}{4} \right)$ and $y = 2^{\frac{1}{6}} \left(\frac{\sqrt{6} + \sqrt{2}}{4} \right)$, -