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HSC Mathematics Extension 2 Trial Examination

Total marks 120
Attempt Questions 1-8
All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (15 marks) Use a SEPARATE writing booklet.

2

1
(a) Evaluate j
0 J1+3x

dx. 2

(b) By using integration by parts, find Ixszx dx. 2
z
6
(¢) Evaluate j. sin®2x dx. ’ 3
0
o x dx
(d) Usingt= tan2 , find jl PP 4
(e) () Find real constants A, B and C such that 2
x+4 _A Bx+ C
*G2+4) x x2+4
() Hencefind | —r2— dv. ‘. 2
x(x2+4)
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HSC Mathematics Extension 2 Trial Examination

Marks
Question 2 (15 marks) Use a SEPARATE writing booklet.
(@ The diagram below shows the graph of y = fix).
YA
___________ 22
\ i
1
1 \ |
| ) 1
; <+ K >
. 4 3 2 10 1\2/% 4
| -1
2+
Y
On separate diagrams, sketch the following, showing essential features.
. -1
O y=7= + 2
&) ,
) y=fx+2) 2
i) y?=f) | 2
(v) y=nfx) 2
(b) Find the equation of the tangent to the curve x* +y3—3xy =3 at the point (1, 2). 3
© )
4
P, y)
%) 3 > X
Q
. s qe . x2 y2
The base of a certain solid is the ellipse 5 + T
- Every cross-section perpendicular to the x-axis is an equilateral triangle. The shaded cross-
section is thus an equilateral triangle with base PQ.
(i) Show that the shaded cross-sectional area is given by 1
A= ﬁyz .
(i) Hence find the cross-sectional area as a function of x. 1
(iii) Find the volume of the solid. 2
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HSC Mathematics Extension 2 Trial Examination

Question 3 (15 marks) Use a SEPARATE writing booklet.

(a)
®)

()
\~/

@

(e)

Stiow that (1 +i)?=2(i—1).

1+2i + 2:—1 is a real number.

3-4i 5i

By evaluating, or otherwise, show that

Draw on one Argand diagram the three loci:

2 ! k|
(1) =1 :15

lz—4 =]z-3i].

(i) Hence calculate the area of the intersection of the three loci:

lz—i <1, %[Sarg(z—i)sg and |z—il<|z-34.

Let p(z) = 223 - 572 + gz — 5, where ¢ is a real number.

G) Ifp(1—27) =0, solve p(2) =0.

(i) Hence determine the value of ¢ if p(1-2i)=0.

Let z be a complex number such that z# 0 and z # 1, and

N
1
o

& o
fi
]
N
|
(=Y

(i) Show that for any non-zero complex number z,

arg(:z:) =2argz.
z

(ii) Letz be a complex number suchthat z#Oand z# 1, and

-1

-1

N

_z_.=_
Z

N

Show that argz=arg(z—,1)+§ or argz=arg(z—1)—32-r. :

(iii) Hence sketch the locus of all points z that satisfy
z z—1

? z-1

|

Marks

TENME? DA 0SFM
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HSC Mathematics Extension 2 Trial Examination

.

Marks
Question 4 (15 marks) Use a SEPARATE writing booklet.
(a) The point P(-,ﬁ' cos 6 2/2sin 6) Hes on an ellipse.
(i) Find the equation of the tangent to the ellipse at P, where 0< o< 5 2
(i) In the diagram below, the tangent to the ellipse at P intersects the x-axis at R and the
y-axis at S.
O - / -\—}' X
(cr)  Show that the area of AORS is SiIfZ Ve where O is ;he origin. 1
3 (B) Find the coordinates of P where this area is a minimum. 2
i (b) In the diagram below, X is the intersection of the altitudes of the triangle ABC.
5 AP produced meets the circumscribed circle at S.
. Copy the diagram onto your answer sheet.
(i) Show that ZRXA =ZPSC. 2
(i) Hence, or otherwise, prove that XP = PS. 2
©) (i) Show that the equation %3+ 13x—16 =0 has exactly one real root, x = ¢, and that 2
l<a<?2. '
(i) Ifx= Bis one of the non-real roots of the equation in part (i), show that 4
_1<Re(f) <—% and 2.2<|f]<4.
5
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HSC Mathematics Extension 2 Trial Examination

. Marks
Question 5 (15 marks) Use a SEPARATE writing booklet.
(a) Twelve pupils enter a competition. From the twelve pupils, two teams of five pupils are
selected to compete against each other.
() How many different ways can the two teams be chosen? 2
(i) Bill, Paul and Patrick are a set of triplets amongst the twelve pupils. Find the 2
probability that they will be chosen in the same team.
3
®) (i) Sketch the region containing all points that simultaneously satisfy the following: 2
x<1, y=21 and y<e*.
(i) The region in part (i) is rotated through one complete revolution about the x-axis. 4
Use the method of cylindrical shells to show that the volume of the resulting solid is
. T, o o
given by E(e — 3) cubic units.
(¢) Aconical penduluin consists of a mass of M kg hanging at the end of a light string of length
1 metre attached from a fixed point O. '
The mass rotates in a circle and moves with a period of § seconds.
The string makes a constant angle of 6 to the vertical.
() Use a sketch to illustrate the forces acting on the mass. 1
(i) By resolving the forces acting on the mass, show that S =27 /@—9 , where g is the 2
8
acceleration due to gravity.
(iii) The string can just support a stationary mass of 5M kg hanging vértica]ly. 2

Find the smallest period that the conical pendulum can have, also leaving your
answer in terms of g.

Copyright © 2005 NEAP
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Marks
Question 6 (15 marks) Use a SEPARATE writing booklet.

(a) (i) Show that I f(x)dx = j. fAa-x)dx.
0 0

z

.. _ 4y 4
(i) Deduce that J' 1 —sin2x di= J‘ tan?x dx

3

1+ sin2x
0

-
(iiiy Hence evaluate j‘“ 1-sin2x , -

1 +sin2x
0

(b)  Particles of mass 3m kg and r kg are connected by a light inextensible string which passes
over a smooth fixed pulley, the string hanging vertically on each side.

The particles are released from rest and move under gravity.
i The air resistance on each particle is kv newtons when the speed of the particle is v m s

Take the positive direction of motion as indicated by the arrow in the diagram below.

3m
Let the tension in the string acting on the masses have a magnitude of T newtons.

@) - By resolving the forces on both particles, show that the equation of motion of the 2
system is given by

d_v=mg—kv
dt 2m

(i) . Hence find the terminal velocity of the system, stating your answer in terms of m, g 1
and k.

(iii) Prove that the time elapsed since the beginning of the motion is given by 3

_2m (_m&_)
t= kloge mg—T)

(iv) If the bodies have attained a speed equal to half the terminal speed, show that the 3
time elapsed is equal to

1% .
Eloge4 X

where Vis the terminal speed.

Copvright © 2005.NEAP . IENMEz;nA_osfm




HSC Mathematics Extension 2 Trial Examination

’ Marks
Question 7 (15 marks) Use a SEPARATE writing booklet.
S .
(2) (i) With the aid of a diagram show that J‘ = < Ju-1foru>1. . : 1
" 1
(i) Hence show that 0 < Inu <2(Ju—1),foru>1. 2
lacn
(iii) Hence show that L"f—”—)O,as U-—>co. 1
(®) () Show that cos(4 + B) + cos(A - B)=2cosAcosB. 1
(i) Let o and Sbe the roots of the equation z2sin2 §—zsin26+1=0.
() Show that @+ B=2cos dcosecd. 1
)  Show that & + B =2cos28cosec’d. 1
(2] Hence by mathematical induction, or otherwise, prove thatif nis a positive 4
integer then
am+ B"=2cosné cosec™d.
(¢) Letp and q be non-zero real numbers such that g(1 +p +¢q) <0.
(i) Show that the equation P px + ¢ =0 has exactly one real root in the interval 1
0<x<1.
(i) Show that the equation P px + ¢ =0 has two distinct real roots, one positi\}e and 3
one negative.
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~ HSC Mathematics Extension 2 Trial Examination

! Marks
' Question 8 (15 marks) Use a SEPARATE writing booklet.
. 2 .
(2) The line y = 2x + ¢ cuts the ellipse x2 + 1L6 =1 at the two points P(x;, y1) and O(xy, o).
() Show that the length of the chord PQ is J3 x; — Xy - 2
(ii) Show thatx,; and x, are the roots of the quadratic equation 4
20x2 + 4cx + (c2-16) =0
and hence find the two values of ¢ such that the length of the chord PQis Zﬁ .
I‘ (iii) Let the two chords found in part (ii) above be P’Q’ and P"Q".
P'Q’Q"P" is a parallelogram as shown in the diagram below.
3 YA
: P’
Ql
>
PI!
er
Find the area of the parallelogram P'Q'Q"P" . 2
®) (i) Show that Sin% = ——“/5—;[2 and find a similar expression for cos—l%' . 2
X (i) Expand (x-iy)3. _ 1
(iii) Hence or otherwise, find all real numbers x and y satisfying the following: 4
¥ =3xy?2=1 }
y3-3x2y=1
Leave your answers in surd form.
End of paper
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STANDARD INTEGRALS

jx"dx =—1-xn+1, n#-1; x#0, ifn<0
n+l

"1

- dx =Ihx, x>0

J=

e%* dx =:—l-e‘zx2 a#0

J a

cosax dx =lsiﬁax, a=0

, a

J-sinaxdx =—lcosax, a;ﬁO'
a

sec?ax dx =ltanax, a#0
a

secaxtanax dx =-1-secax, a#0
a

[ 1 1, -1x

dx ==t = a#0

a?+x2 a. a

——I——dx =sin_w—c, a>0, -a<x<a

JJ2-%2 a

= dx

Nx2 +a?

I

Note: Inx =log x,

=In(x+Jx2-d?), x>a>0

= In(x + #/x2 + a?%)

x>0

N
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HSC Mathematics Extension 2 Trial Examination Solutions and marking guidélines

Question 1
Sample answer

Syllabus outcomes and marking guide

1 2 1 1
= [ 201439 2
@ L 2 J;(+x) x

B8

* Correctsolution..................... 2

* Appropriate substitution done correctly.

i1
= 1 2 OR
B !:2 x2x% 3('1 *3%) }o *  Correct modified primitive.
4., OR
= §(“/‘i -0 *  Equivalent merit but fails to get the correct
Pl SOMMEON. o v v v i
=3 . ,‘
P _ E8
® Letw'=x" and v= 2y *  Correct primitive............. Cedaens 2

J-u"v dx = uy.— Iuv' dx, 50

* Solution demonstrates inderstanding of the
method of integration by parts but fails to get

25; =1more (13,1 the correct primitive. . ............... 1
x*1a2x dx 3* 1i2x 3* xxdx
W WSOYE & )
=5x In2x 3 I x*dx
=1 3moy_1.s
=3% In2x ¥ +c
(©  sin®2x= sin?2x x sin2x = (1 - cos?2x)sin2x E8 )
- z + Correct solution.. . ......... [P 3
6 6 -
Hence I sin®2xdx = J. (1 - cos?2x) in2xdx +* Appropriate substitation dons correctly.
' : OR )
0 0
1 *  Correct modified primitive.
[, : OR
=2 | (1-w)du- where u= cos2. -
2 ;‘( w)du where u=cos2x | Equivalent merit but fails to get the correct
2 solution. . ... e e e 2
1 ud! -
= i[" - '5']1 * Recognises that
2 sind2x = (1'- cos?2x)sin2x. ......... 1
-_-l[ 1-1 _(l_-l_)]
2 3 2 24
=3
48
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2 Trial Exi
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Question 1 (Continned) 3
. Sample answer SyHabus outcomes and marking guide
; =tanZ
@ Let 1= tan2 Correct primitive., . oo vvvvatieneian, 4
Then dt= %‘secz Xax Appropriate substitution done correctly.
2 OR
2 Correct modified primitive.
50 dx=—=—dt
1+ OR
o 2 * Equivalent merit but fails to get the correct
Also 14 sinx=1+- ) PrImtive. . oot 3
25 4 2 o / 2
Slr2e4s « Recognises that 1 + sinx= 1+9 and that
N 1+ o 1472
t - .
2 dx= ‘or equivalent merit......., 2
. ; 2
Hence | [l 2d * Recognises that 1+ sinx=ﬂ———+tg— or that
1+ sinx (1+H)% 1412 dy = 2dt L+t
T 2e croceoronerincireacans 1
=2 J. (1+1)"2det
-1 -2
=2 X e + = e
T Tt
= £
= 2 e +c
1+ tanz
2
© @) x+d=A@2+4)+x(Bx+C) B8
Put x=0 ¢ Correct sOlutions.. ..o vvuvveaniiias 2
Then 4 = 44 » Applies method of partial fractions correctly
so A=1 but fails to get all the correct answers. .. 1
Bquating coefficients of x?, A + B=0
50 B=~1
Equating coéfficients of x, C=1
HenceA=1,B=-1and C=1
E8
" x+4 1, -x+1
(i) dex = I(; + x; " dx {e  Correct prisitive.. ... vvvvnrenn.... 2

1, 1 2x 1
—J‘xdx 2 x2+4dx+J.x2+4dx

= g Ln (a2 1 %
=Inx .zln(x +4)+_2tan (2)+c

* Makes reasonable progress after making the
Jink to part (i) but fails to get the correct
primitive. . ... We b e v 1

HSC Math s Ext 2 Trial B ination Solutions and marking guidelines
Question 2
Sample answer Syllabus outcomes .and marking guide
® O YA E6
" | o Comectgraph. ...oovvvvniineninnnss 2
1 i
i : : +  Correct shape, but asymptotes and intercepts
Pa— \ are not indicated or are incorrect.
D >x OR '
10_L 1, 2 3 « Egquivalentmerit. ........oooiinuaa.. 1
- ! i
] 1
] 1
! 1
Y
Gi) E6
* Correctgraph. .....ovvvvviinrnnn. 2

+ Correct shape, but asymptotes and intercepts
are not indicafed or are incorrect.

OR
» Equivalentmerit. ..............coo. 1
(i) E6
« Comectgraph. .......ovnivvevivunn, 2

» Correct shape, but asymptotes and intercepts
are not indicated or are incorrect,

OR

+ Egnivalent merit., .. ... NI .1

INote: the concavity of the.curve to the right of
about x = 4 cannot be established.

)

YA |
1 i
L
_____ 122_._._1 [ N
1o (A
i
ON 1, 3[4 -
i 1
] ]
3 ]
] 1
Y !

E6
e Correct graph. ....... [P 2

«  Correct shape, but asymptotes and intercepts
are not indicated or are incorrect.
OR

« Equivalentmerit. .....coovivvnirnun.. 1
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Question 2 (Continved)’
Sample answer

Syliabus outcomes and marking guide

HSC Mathematics Ext

~

2Trial E ination Solutions and marking guidelines

Question 2 (Continued)
Sample answer

Syllabus outcomes and marking guide

®)  Givenx®+y3_3xy=3
Differentiating both sides with respect to x,

dy d
2 2%y _(3,8Y -
3x% 4 3y = (Sxdx-rBy)—O
B3 gy 2
..dx(By 3x) =3y -3x
dy_3y-3x2
dx 3y2_3x

At the point (1, 2)

d&y_6-3
dx 12-3

n

L= Wwliw

Hence the equation of the tangent is:

¥=2_1
x-1 3

3y-6=x~1
x-3y+5=0

B6 .
* Comrect answer..................... 3

* Finds the correct derivative and finds a linear
equAation ..........., i, 2

*  Finds an equation with two basic errors . 1.

(©) () 'The base of the cross-section is 2y.

Hence A = %x(zy)zxsinsb"’
S NI
_2><4y X 5
- fiy

2y

2y

E7
* Comectanswer. .................... 1

() Hence A= 1-62—3“/5(25 -x2)

Solving the ellipse for y,

B7
* Finds the correct expression. .. ........ 1

~ T R R ST

5 N
() Ve j 5%3(25—;:2):17:

5

32./3 J‘
=222 | (25-x2)dx

25 .

e

32430 12
=8 (1os 3.

_32.3 125
=75 X2xg
32043 ,
=Ty

E7
* COmect ansWer v..vvvvrvuinrn.n.... 2

*  Correct method with no more than one
L4 4o Vereaias 1
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HSC Mathematics Extension 2 Trial Examination Solutions and marking guidelines

Question 3 Question 3 (Continued)
Sample answer , Syllabus ontcomes and marking guide - Sample answer Syllabus outcomes and marking guide
@  (+dE=(l+D)(1 +i)? E3 — =
. i 2= .
=1+ D)) Correctly shows theresult............. 1 (&) () ar,g(—_z—) =argz—arg(z ) « Correctly shows expression. . ......... 1
=2(i—1), since i2=—1 . = argz - (-argz)
) Ar2i 344i 2-i <1 (1420)(3+4i)_1+2i |E3 =2argz
34773447 5i i 25 5 + Correctly shows the result...........,. 2 A =
, . . z__Z— .
=1 ;521' B +4i-5) « Substantially correct................. 1 @ Given 7 1 *  Comrectly shows both expressions .. .. .. 2
: : -1 « Makes substantial progress.
1428 . arg| é):arg - progr
=75 (=2+4i) (‘Z' z——l) 0}1){ - o - .
; ; ) * Showsalinkwith (@) ................
201+ 21222- 1420 =arg(-1) + arg( E:_:)
7—
= -2%5“_5 1 2argz= n+2arg(z~1) or 2argz =+ 2atg(z~ 1)
Vi3 z
argz=arg(z—1)+= orargz=arg(z~1)-2
= —%, which is a real number & gz-1) 2 & ) 2
- _Z z
© ® YA E3 . (i) argz—arg(z~1)=7 or -3 |+ -Correct diagram of the locus.. ... ,... 2
¢ Correct diagrams.................... 3
2 /‘ , = *  Draws asemicircle.
600 * One diagram incorrect. .............. 2 OR
) ’ . .|* Sobstantial progress.
1Yy e Two diagrams wrong................. 1 : OR '
»  Pails to éxclude the points z= 0, 1 from the
< > correct diagram. . ... .uviviininian.., 1
‘ .
" B3 : -
(i) area =2 x 1xZ . . By the converse of the angle-in-a-semicircle theorem,
2 6 Correct solution.... ... TR 1 this is the circle whese diameter is the interval joining
=I725unitsz z=0 and z=1,
. The poirits z= 0 and z =1, however, are secluded,
@) @ p@=223-5z24+49z-53 B4 . because arg0 is undefined.
N . * Correct solutions.. . ................. 2
Since p(1-2#) =0, then p(1 +2{) =0
’ [conjugate root theorem]| « * Obtains the conjugate solution 1 +2i.... 1
Hence 1 +2{+1+42i+ a= % fsum of roots]
=1
=2
Hence the solutions of p(z) = 0 are
z=1424,1-2i0r 3. '
(1 . B4
(6] P(é) =0 from part (i). * Comectvalneforg. ..........co.s... 1
3 2
Hence 2@) - 5(51) +gx % —-5=0
.1 5 ¢
Ss - -5:=0
IRV
ol
3 6
Lg=12
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Question 4

Sample answer

Syllabus outcomes and marking guide

-

@& &

x= ,/ioosﬂ and y= Zﬁsine
Differentiating, ‘%b,/isme and s%: 242c056

dy de

dy_ 49
Hence & =36 &

1
~J2sin6

= Zﬁcos fx
~—2c0s8
siné
- Equation of the tangent is given by:

Jasin 0= 2 (5
y—ZﬁslnB—tang(x ﬁcos&)

sin 6y — 2/25in ) = ~2cos 8(x~ 3003 6)
ysin @ 2./2sin? §=~2xcos 8+ 242 cos? 6
2xcos 8+ ysin 6=2ﬁ(sm26+ cos? 6)
2kcos 6+ ysinf=2./2

XC08 0+ ysin6= 1

2 2

E4
*  Any form of the equation. . ........... 2

* Makes substantial progress towards the

(if)

(@)  §'is the y-intercept, i.e. (O, ;21—;1—%),

and R is the x-intercept, i.e. a‘/-s_é, 0) .

L o2 22
2 cosf sinf
.
2sin fcos 8
=A
sin28

Area of AORS =

E4
¢+ Cormect solntiop., . ........ e 1

HSC Math ics Ex 2 Trial E tion Solutions and marking guidelines
Question 4 (Continued)
Sample answer Syllabus outcomes and marking guide
(b) 6] PE3
» Validproof. ............coviiinii 2
* Shows LPCS=LRAX .............. 1
Let ZBAS=a
Then £BCS = o (angles on the same are BS)
Hence £RXA =.ZPSC =90° -~ & (angle sums of
ARXA and APSC. .
@) ZCXP=90°- & (vertically opposite angles) PE3V 1id viock. 5
Hence AXPC=ASPC (AAS congruent test) Alid prodf. ...
50 XP = SP (matching sides of congruent triangles) *  Substantially correct. ....o.ovvviiin, 1
ZRXA = £PXC (vertically opposite angles are equal).
LLPXC=LPSC
LAXPC=ASPC (AAS test)
~.XP = P§ (comresponding sides of congruent
triangles)
i) Let P(x)=x3+132-16=0 B4
@ & =) o VAlAPIOOE. v neeenerreenenenn, 2

P'(x)=3x%+13
Now P*(x)> 0 for all x.
.. It is always increasing.
. P(x) = 0 has only one root.
P(1)=+2 and P(2)=8+26-16
=18
.. The root a lies in the interval (1, 2), i.e. 1 <a <2,

.

Reasonable approach, for example, finds
P(1) and P(2) or shows P'(x)>0...... 1

(B The minimum of the expression

4 . SN
Smz oS when sin26=1,

where 0< 8<%
2
Thatis, 26=Z
ati§ 3
o=z
4
Hence the area is a maximum when
P= (ﬁcosg, zﬁsinﬂ) )
=(xL,2.5% J;)
(2%,

_ N
=(1,2)

B4
e Corréct sOIUtOn. « oo vvvervvnnnnnnnns 2

¢ Correctly obtains the area but unablé to
fndP.eii i e 1
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Question 4 {Continued)

Sample answer

Syltabns outcomes and marking guide

@) ¥ Bisanon-real oot of P(x) =0,
then by the conjugate root theorem
B is also aroot of P(x) = 0.
Now a+ B+ f =0
a+2Re(f)=0 (since S+ f =2Re(B))
Re(f) = -g

Now I<a<2

1 a
s02<2<1,

(sum. of roots)

1 @
—=>—= >
2 2
or——1<--‘-75<—l
2 2
Hence ~1 <Re(f) <-—%

Also ax Bx f =16 (product of roots)
nalfr=16  (since BB =|A%)

“ g

Now 1< a<2

sol<-—-—<2
18?

1 1 1

16~[p2 "8

16> (42> 8

8<|p2<16

2.42<|8 <4

B4

Is able to obitain both expressions
correctly. . ...l 4

Obtains one correctly and makes progress in

theother.. ......ooviiiiiiiniin., 3
*  Oneanswer comect.......... [P A
» Some progress.. ... e 1

HSC Mathematics Extension 2 Trial Examination Solutions and marking guidelines

Question §

Sample answer

Syliabus outcomes and marking guide

(a) (i) Choose the first 5 in (152) ways,

then the remaining 3 in @ ways.

But we have overcounted by a factor of 2, since the two
terms could be chosen in either order.

Hence number of ways = % x (152) X @

= 8316

PE3

‘COmTECt ADSWEE. + vvvvuveerensnannnns 2

.

Substantial progress. .....ooevviio. .. 1

(i) -If Bill, Paul and Patrick are in thé same team, then the
remainder of théir team can be chosen in ( ways, the

other team in @ ways.

Hence number of ways = @ X @

=756
. 756 _ 1
H bability = 2= =~
ence probability 8316 11
Alternative solution;

P(Bill is chosen) = %

If Bill is chosen, P(Paul is in same team) = i%

£ Bill and Paul are in the 'team,

P(Patrick is in same team) = 1 0

‘Hence probability = g %
=41

1

i

PE3

.

Correct answer, ..........u.. fresade 2

.

Substantial progress. .......o00v0uisl 1

® @

E7

Correct region sketched, ............. 2

Substantially correct with one error. . . , . 1
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(Continued)
Sample answer

Question 5§

Syllabus outcomes and marking guide

Question 5§ (Continned)

Sample answer

Syllabus outcomes and marking guide

(i)

}
A shell of thickness Ay, height 1~ x, radius y can be
approximated by the rectangular prisin below,

—1l-x—
2-[[ e -
34
! )
Ay

Let AV be the volume of thiis shell.
SAV=27y(1 - x)Ay

€
V= OZz:ry(l -x)Ay.
y=1

e
Hence V= an y(1=x)dy
1

e
= foJ. y(1 - lny)dy
1
[use infegration by parts]

E7 ,
» Correct SO0 vv vt v i iienanannns 4

+  Shows that V=27rJ‘ y(1-1ny)dy or
equivalent, ...... oo i, 3

»- Writes down an integrai for the volume
using the correct height and radius. . . ... 2

Finds the height or radjus of the shell.. . ‘. 1

(ii) Letthe radius be r metres, and the angular velocity be
@ radians per second.

Resolving vertically:
Tcos0-Mg=0
Teos8=Mg ...(1)
Resolving horizontally:
T'sin &= Mw*r - (2)

2)y+(1) tamf==-=

=2_7_7 ’(an&:‘t_"'aw
[“’ s] 52

[r=sind}

WS=2x 3"5—— since § is positive

ES

o Correct expressionforS..............

» Attempts to resolve forces or equivalent

(iif). The smallest period will occur when T'=5Mg.
Hence from part (i), T'cos = Mg
T<5Mg newtons
~Teosf=Mg
~Mg Teos < SMgcos 6
ie. Mg<5Mgcos®

[from past ()]

. COS 021

3 [150039«:1]

5
From part (if) S=2# %—9
Hence the smallest. period is
1
S=2n A/:—
58

2w
= — seconds

3

E5
« Correct solution.

« Bstablishes that

cos 0= % or equivalént

© ®

)
T'= tension in string, Mg = weight due to gravity

ES .
» Cormect diagram with all the forces. .... 1
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Question 6
Sample answer Syllabus outcomes and marking guide
a a B8
@ () ‘We arerequired to show that J FXdx= [ fla-x)dx |+ Comectly ShOWR. . .vveniieeneinnn... 2
Let u=dex ¢ "o « Substantially correct. ................ 1
Then du = —dx
a 0
Hence .f fa~x)dx=~ j fuydu
0 a
a
= I S()du
0
u
= I Fx)dx, as required
[}
. A% B8
z . gl sz(z —x) o COMECtANSWEL « o evvvrverannneaenes 2
(i) 1-sin2x 4 J' - dx
0 1+ sin2x 01+ smz(_’_’ - ) « Applies the result from part (@)......... 1
4
.3 s (T
T 1- sm(i - 2-x)
= dx
o1+ sin(—g— 2x)
Z
41— cos2x
- ,[ 1+ cos2x &
0
Z
4 1 A1 — 9 sind
- J‘ 1-(1~2sin’x) ;o
o 1F (2c082x 1)
zx
4 9 gin2
2sin®x di
2.cos2x
0
%
4
= “- tan?x dx
0
z z E8
4 ) +  Correctly evaluates the integral.. ... .... 2
(iii) I tan?x dx = f (sec?x~1)dx Y i gre
0 0 + Correctly substitutes into a primitive.
4 OR
=[tanx— x]‘; »  Correct primiiive and a mistake in the

= tanif - f = (tan0 - 0)

=1-

B L
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Question 6 (Continued)
Sample answer Syllabus éutcomes and marking goide
® @ AtPmEi=T-kv-mg ...(1) ES
L ) e Correct EXpression. . oo.vvvveonnnnan. 2
At Q,3mi=-T+3mg-kv ...(2)
Adding (1) and (2): + Obtains the correct forces at Pand Q.... 1
dmi=2mg—2kv
P= mg-—~ kv
2m
dy_mg—ky
dt 2m
(i) Let the terminal velocity be vp E5
For terminal velocity: ¢ Comectanswer. .........cvevveinnn. 1 -
dv
Let P -0
ie. mg —ky =
2m
mg=ky
Vp= I’ig (where vyp=V)
Ly=18
k
Ldt . 2m E5 .
(@il)  From (1): v mg—kv *  Correct eXpression. .....vvveavioeen. 3
= ‘%"-’m(mg —Bb)te + Substantially COTTeCt. .. .. ........ 2
Whent=0,v=0. »  Makes s0me progress... ... .. R |
n0= :zl—nlnmg t+c
k
c= 2—'-’hnmg
k
=2 (mg — k) + 2P tumg
k k
m mg
t=~—ln
k" mg-kv :

stbstitution. . . ... e 1
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Question 6 (Continued) Question 7
Sample answer Syllabus outcomes and marking guide Sample answer Syllabus outcomes and marking guide
(v) Putvequal to half the terminal velocity. 135 ' (a) ) PE3, H8
Thatis, v= %g ) Correct answer. ........... beeesenan 3 + Correctly shows the inequality. .. .. .... 1
2  Substantially correct. ... ............. 2
Then r=<Tjn— ME v
k mg—kx %f * Makes SOME PIOZIESS. .. \'voennn.... 1
= 2_]:_" 8
mg— %mg
2
= in2
2vp.
=—=In2 < area of upper rectangle at x.= 1
=214 =(u-1)x1
g =Ju-1
Ju PE3, H8
(i) Cleadly I dx. 0 » since the curve is above the x-axis. | *  Correctly shows the inequality. ......., 2
x
! = Substantial progress linking from part (i) but
3 di fails to complete the proof.............. 1
Hence 0< | —;<A/1_z-1
1
0< [lnx]f <fu-1
0 < b (/) < -1 [mﬁ - %lnu]
0< %lnu_ <iu-1
O<lnu< 2(& - 1), as'required
. PE3, H8 ’
ifi) Since 0 < Inu <2(Ju~1), ) . -
D u< 2 )' + Correctly shows the it ...........0 1
.'.0<!°~5-'-‘<2-—£——~—2‘ ':—1 .
Now 2‘%]4)—)0 as ¥ —» oo,
Hence 135_!—)0 as v > co;
“Thiat is tim 198% _ .
u-re U
® (@ cos(A +B)+ cos(A~B) PE3 _
»  Correctly shows expression............ 1

= cosAcosB - sinAsinB + cosAcosB + sind sinB
=2cosAcosB
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Question 7 (Continued) b a " " Question 7 (Continued)
Sampl Syllabus outcomes and marking guide
ple answer 4 g gv Sample answer Syliabus outcomes and marking guide
@ (@a+f= Si-nfg -E4 A correct expression for a+ £ 1 @) Letv(x)= 1 +—2_ 49, wh BA
2511? 679 A S byt here +  Comectly shows bothresults...........3
_ 2sinfcos _ .
T gin26 ##0, -1 avd x#-2. +  Correctly shows one result and substantial
_ 20050 Put v(x)=0. progress with the other. .............. 2
: Then x(x+ 1) + 2) +1 ] =
sind x4 D4+px(x+2) +gx+ 1)(x+2)=0 + Correct expression for the discriminant or
=2 cos Bcosec & S x2(L+p+ ) +x(1+2p+3g)+2g=0 equivalent merit.. ..oovvvinnnnnnansn 1
= E4
B) a2+ p2=(a+p2-2ap N o for 34 B2 ) Now product of roots -
= (2008 0 cosec )2 ~ 2cosect 6 {e correct expression for %+ f%. ..... l1+p4g
=2 cos? @ cosec? §—2cosec? & = -—’2—2 xg(l+p+gq)
= (20082 #-1) cosec? § (()1 tpt ‘1)1 ,
. <0, +p+g)<
= c0s2 6 cosec? 6 since q( P+q)
‘Hence v(x) has two roots, one positive and one negative.
(y) From (ii) and (iii), the formuila is true for n = 1 and |HE2, B4 ) ) Note: Once the product is negative, there is no need to
n=2. « Proves the inductive step. .. ........... 4 prove separately that the roots are distinct. (Note also
. P that if the roots are complex, then th > conjugate:
Assume it is true for all » in the interval 2 <n<k. «  Makes considerable progress in proving the . . . I')z " en they are conjugates,
That is, a*+ g¥%=2cosk8 coseck @ for 2 <n=<k. inductive step, but fails fo finish. . ... ... 3 and (a+ib)(a—ib)=a"+b">0.)

¢ now have the result true for n =k + 1. T ; N
Shows the identity (a**+1 + g¥+1)sin2 0

That is, we have @ ** 1+ g%+ 1= 2cos(k + 1) coseck+16 —(a¥+ fRysin2 B+ (k1 + fEH1) =0

Multiply both sides of z2sin? @~ zsin28+1=0by | eeeeeees e eeeate e 2
k1 . * -

2", substitute orand /4, and then add. «  Attempts to relate the case n =k+ 1 to the

(a’""’l+ﬂ"*l)sin29—(ak+ﬂ‘k)sin25+ ak-—l +ﬂ""1=0 caseni=k.

OR
k414 gkelygin2
so (k¥ 1+ fE+T)sin? 0 ¢ multiplies by-z*~ ! but fails to continue.. . 1

= (2coskfcosec kH) sin2 #—2cos(k-1) feosec 16

=4coskfcos 0coseck~ 19— 2c08(k-1) Beosec* 10

soak+ly g+l

. k+1
=2co0sec"

#12cosk6 cos 6 cos(k—1)6]
=2cosec?* 10 cos(k #+ 1)@+ cos(k-1)6
~cos(k~1)8] from part (i)
=2cosec” 10 cos(k+1)0
Hence the formula is tme for n =k + 1.
So by the principle of mathematical induction
at+ fr=2cosec” @ cosn B for integers n 2 1

3 Let =52 E4
© ® u(x)A FrpEta +  Correctly shows theresult............. 1
Then u(0) x u(1)=g(1 +p +q)
<0

Hence u(x), being a quadratic, has exactly one zero
between 0 and 1.
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Question 8 Question 8 (Continued)
Sample answer Syllabus outcomes and marking guide Sample answer Syliabus outcomes and marking guide
i 2 B4 Solving (A) gives x; and x,:
&) i). PO =(x,-x,)? —v.)2 olving (A) gives x; and x,
@ ® @ =Gy m)*+ 0170 ¢ Correctanswer. .................... 2 5 5
= (xl_xz)Z + [(le + C) - (2352 + C)]Z x= —4cE AJ16c% - 80(0 - 16)
( )42 )P * Substantially correct. 40
S SatoY al g PACTER5) OR
—4¢ + /1280 — 64¢2
=5(x, ~x,) « Acorectapproach. ................. 1 Jei = %o = —
Hence PO = ./5 x le -~ x2| _—4c— /1280 64c2
40
@) 168%+y*=16 ..(1) E4 Comeet sof . ,
y=2r4c L orrect solution.. ... ..........vua.. . . - ’ 1280 - 6402
l . . 20
fet ; . * Able to obtain the equation but not the
Substituting (2) into (1), eq
e@ % correct values of €. o vve vt i uen 3 J1280 — 64¢2 y
16x% + 4x” £ dex +¢¥=6 LetA/§><~‘-—2—0——=24/5
*  Able to make substantial progress.. . ... 2 .
202% + dox+ > ~16=0 P 80—
' Ex2E = =21
4¢ *  Able to make some progress .......... 1 ' 20
Hence %y +x, = %
,\/gx;\/20~c2=5ﬁ.
=— 5(20-c?)=50
- 16 20-¢2=10
and X%, = £ 0 . ¢2=10
Hence (xl—xz)zz‘(xl +x2)2_4x1x2 C:im _ )
2 2 (iiiy The area of the parallelogram P'Q'Q"P" is given by Ib |E4
=£..¢ ; 16 where 1= P'Q' and b is the perpendicular distance o ComectanSWer .........eveneiuenss 2
25 : between P'Q‘ and QP .
2 3 etwoen F1Q" and © e Usesavalidmethod. ..........0.00. .1
=C —=5c7-80 Now, I =242 (given)

25
and b= 2% 0=1x~ 10~ /10

= liQp;c_z). (2)2+(1)?

75
Put PQ=23 =210
) r 5
PQ -_-82 =2A/§ .
5x4(zg;c =8 - Area=(2.43)2
2 =8 m?
20-* =10
10=¢?
c= 10 or —10

Alternafive solution:
To find %, and x;, solvé simultaneously

2
24 ¥ =1
x +16 1)
and y=2x%c ...(2) .

Substitute (2) into (1):

x2+Ql‘_‘h£l2=1
16

1632 +4x2 3 dxc+ 2= 16
Giving 20x2 + dxc +(c2-16)=0 ...(A)

T AL EIELT AnRE RIEA D vy




HSC Mathematics Ext

2Tdal E ination Solutions and marking guidelines

Question 8 (Continued)
Sample answer Syltabus outcomes and marking guide
PE2
" 7 .
®) @ Smﬁ = sin 3 ﬂ *  Correct eXpressions.. . ............... 2
=sin—§x cosi—r— sinfx cos%’ 1o Onecomect ..oueeuuunnneannnn. .. 1
B 11
25 fh2
242
_f-f3
4
Similarly cos-l?-; = cos%’ X cosi—r - sin-;-t X siuf
1.1 .3 1
= X T X e
2 0 2.4
1443 -
232
_ B
2
(0 (x~iy)3 =23 < 3x2(iy) + 3x(iy)? - (iy)? E3
* Correctexpansion................... 1
=x3 ~3ix?y — 3xy2 4 iy3
=x3-3xy2 +i(y3 - 3x%y)
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Question 8§ (Continued)

Sample answer

Syliabus outcomes and marking guide

(i) By part (i), (v~ 1)’ =2°~3)% +16° - 35)
=1 + i, by the given identities,

= ﬁcisz ﬁcxs-— or ﬁms 17z

i

,_.=g.~53_‘1r 6177:
SX -y =2 ms1 , 2 cxs4 or 2%cis=— 12
‘We now apply part (i).
1
In the first case, x ~ iy = 28 cxsE
1
=2 Brl2, (B )
80 x= 2(£+J—) ('/- "/—)
1
In the second case, x— iy = 2 00834—”
1
_ 46 37, ;037
=2 cos(—4~+zsm 4).
1 1
ne. 1 i 1
LR N T IV
BTN
= 1
In the third case, x=-2 3 and y=-2 3
1
~ 5. 117
iy = 28¢is=- D
_26 (7
cis i
- 39 1 32)
2% cos 1 + isin| -

1 A
=25(—.cos(-2-—ﬁ) —isin 3 12)
=2é( sm-l-z-—tcoslz)
<ol iy

80 x= —2‘15(—‘/6—;—“/—2) and y= 2%(-"—[_6—:—1/2)

{E3

Makes substantial progress.......... e

Makes SOIME PrOGIESS. oo v vvvevranns.




