

HSC Trial Examination 2006

Mathematics Extension 1

This paper must be kept under strict security and may only be used on or after the afternoon of Wednesday 9 August, 2006 as specified in the Neap Examination Timetable

General Instructions

question

Reading time 5 minutes

Working time 2 hours

Write using black or blue pen

Board-approved calculators may be used

A table of standard integrals is provided at the back of this paper

All necessary working should be shown in every

Total marks - 84

Attempt questions 1–7
All questions are of equal value

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2006 HSC Mathematics Extension 1 Examination.

Neap Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Copyright © 2006 Neap Ash 4310000649 PO Box 214 St Leonards NSW 2065 Tel: (02) 9438 1386 Fax: (02) 9438 1385 Tenmel.O.A.O.F.M.

Total marks 84

Attempt Questions 1-7

All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks

Question 1 (12 marks) Use a SEPARATE writing booklet.

- (a) Find $\frac{d}{dx}\cos^{-1}5x$.
- (b) Calculate the size of the acute angle between the lines y = 2x 7 and 3x + 2y = 5. (Answer correct to the nearest degree).
- (c) Determine the coordinates of the point P that divides the interval joining the points (1,3) and (4,9) externally in the ratio of 2:5.
- (d) Solve $\frac{2}{x-5} \ge 3$.
- (e) Use the substitution $u = \cos x$ to find $\int 6\sin x (1 \cos x)^3 dx$.

Question 2 (12 marks) Use a SEPARATE writing booklet.

2

Marks

3

(a)

In the diagram, O is the centre of the circle that passes through the points Y, Z and X. Line AB is a tangent to the circle at X and $\angle OXZ = \theta$.

Prove $\angle ZXB = \angle XYZ$.

(b)

In the diagram points A, B and C lie on the circle. Line PQ is a tangent to the circle at A. Line QD is parallel to AB, meeting BC produced at D.

Prove that ACDQ is a cyclic quadrilateral.

Copyright © 2006 Neap

- (i) Show that there is a root to the equation $x^3 + x = 9$ between x = 1.5 and x = 2.
 - (ii) Starting with $x_1 = 2$ as the first approximation to the root of $x^3 + x = 9$, use one application of Newton's method to find a better approximation to the root. Express your answer in simplest, rational form.
- (d) Use mathematical induction to prove that $4 \times 2^n + 3^{3n}$ is divisible by 5 for all integers $n, n \ge 0$.

1

2

Question 3 (12 marks) Use a SEPARATE writing booklet.

(a) What is the coefficient of x^3 in the expansion of $(2x-5)^7$?

2

Marks

- (b) The polynomial $P(x) = 2x^3 + 6x^2 8$ has three roots: 1, -2 and α . Determine the value of α , and explain the geometrical significance of this value.
- (c) A ball is projected from the top of a 60 m vertical cliff with a velocity of 10 m/s at an angle of 30° above the horizontal. Take the origin as (0, 0). Assume g = 10 m/s².

- (i) Show that $x = 5\sqrt{3}t$ and $y = -5t^2 + 5t + 60$.
- (ii) Find the maximum height of the ball above the ground.
- ii) Find the time that elapses before the ball hits the ground.
- (iv) Find the Cartesian equation of the trajectory of the ball.
 - ion of the trajectory of the ban.

Question 4 (12 marks) Use a SEPARATE writing booklet.

Marks

2

1

2

1

(a) I have 5 notes: one \$5 note, one \$10 note, one \$20 note, one \$50 note and one \$100 note. By choosing the \$5 note and the \$20 note I can make a total of \$25.

How many different sets of money with a value greater than \$0 can I make by choosing any or all of the notes?

(b) Karen is a member of a 9-player softball team.

- (i) In how many ways can they bat if Karen bats in the 9th position?
- (ii) There are two left-handers in the team. If the batting order is randomly selected, what is the probability that the left-handers will be in the 1st and 9th positions?
- (iii) Every time they bat, each player has a probability of $\frac{1}{4}$ of getting out. What is the probability that, at most, 2 of the first 5 batters will get out?
- (c) By expanding the expression $(x-1)(x^5 + x^4 + x^3 + x^2 + x + 1)$ or otherwise, determine the number of real solutions to the equation $x^5 + x^4 + x^3 + x^2 + x + 1 = 0$.
- (d) The points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola $x^2 = 4ay$.
 - (i) Show that the coordinates of the mid-point, M, of the chord PQ are $\left[a(p+q), \frac{a}{2}(p^2+q^2)\right]$.
 - (ii) The chord PQ is a focal chord, i.e. pq = -1.

 Find the equation of the locus of M and describe the locus of M geometrically.

Copyright © 2006 Neap

Marks

Question 5 (12 marks) Use a SEPARATE writing booklet.

(a) Find $\int 2\sin^2 4x dx$.

- (b) (i) Prove $\frac{d}{dx}\left(\frac{1}{2}v^2\right) = \frac{d^2x}{dt^2}$.
 - (ii) The speed, v cm/s, of a particle moving along the x-axis is given by $v^2 = 72 12x 4x^2.$

Show that the motion is simple harmonic.

- (iii) Find the period and the amplitude of the motion.
- (c) An ice cube tray is filled with water at a temperature of 18°C and placed in a freezer that has a constant temperature of -19°C. The cooling rate of the water is proportional to the difference between the temperature of the freezer and the temperature of the water, T.

That is, T satisfies the equations

$$\frac{dT}{dt} = -k(T+19)$$
 and $T = -19 + Ae^{-kt}$.

- (i) Show that A = 37.
- (ii) After 5 minutes in the freezer the temperature of the water is 3°C. Find the time for the water to reach -18.9°C. Answer correct to the nearest minute.

Question 6 (12 marks) Use a SEPARATE writing booklet.

(a) Evaluate
$$\int_{\frac{\pi}{2}}^{3} \frac{12}{x^2 + 9} dx$$
.

(b) Prove
$$\frac{\sin 4\theta}{\cos^2 \theta - \sin^2 \theta} = 4\sin \theta \cos \theta$$
.

(c) (i) Use the formula
$${}^nC_r = \frac{n!}{r!(n-r)!}$$
 to simplify ${}^{n+1}C_8 \times {}^8C_{n-3}$. 2

Express your answer in the form of $\frac{A!}{B!C!D!}$.

- (ii) Hence, or otherwise, find the *number* of different values *n* can take.
- d) Find all solutions to the equation 3

 $\sin\theta - \cos\theta = \sqrt{2} \text{ for } 0 \le \theta \le 2\pi.$

Marks

1

Marks

Question 7 (12 marks) Use a SEPARATE writing booklet.

(a) The volume, $V \, \text{m}^3$, of usable wood in a tree of radius R metres can be modelled using the formula

$$\log_{e} V = 3\log_{e} 2R - 0.81$$

(i) Determine the value of $e^{0.81}$ correct to 3 significant figures.

- 3
- (ii) Using your answer to part (i), and working with 3 significant figure accuracy, show that the formula $\log_e V = 3\log_e 2R 0.81$ can be expressed as $V = \frac{32R^3}{9}$.
- (iii) The radius of the tree is increasing at a rate of 0.02 m/year. At what rate is the usable volume of the wood in the tree increasing when the radius of the tree is 1.2 m?

 Answer in m³/year to 2 significant figure accuracy.
- (b) (i) Show that $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$.
 - (ii) Given $\sin^{-1}\left(-\frac{2}{3}\right) \cos^{-1}\left(-\frac{2}{3}\right) = k$. By starting with expressions for $\sin^{-1}(-x)$ and $\cos^{-1}(-x)$, or otherwise, find an expression for $\cos^{-1}\left(\frac{2}{3}\right)$ in terms of k.

End of paper

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \ x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

Note: $\ln x = \log_{\rho} x$, x > 0

TENME1_QA_66.FN

HSC Trial Examination 2006

Mathematics Extension 1

Solutions and marking guidelines

Neap Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Copyright © 2006 Neap Administrations PO Box 214 St Leonards NSW 2065 Tel: (02) 9438 1386 Fax: (02) 9438 1385 Telimet.sc. p. FM

HSC Mathematics Extension 1 Trial Examination Solutions and marking guidelines

Que	estion 1	
	Sample answer	Syllabus outcomes and marking guide
(a)	$\frac{d}{dx}(\cos^{-1}5x) = \frac{-1}{\sqrt{1 - (5x)^2}} \times 5$	HE4 • Correct answer in any form
	$=\frac{-5}{\sqrt{1-25x^2}}$	• Uses formula for $\frac{d}{d\theta}(\cos^{-1}\theta)$
(b)	$m_1 = 2, m_2 = \frac{-3}{2}$	PE2 • Correct answer, ignore accuracy 2
	$\tan \theta = \frac{2 + \frac{3}{2}}{1 - \left(2 \times \frac{3}{2}\right)}$	Uses formula for angle between two lines OR Finds both gradients correctly 1
	$\theta = 60^{\circ}$ to nearest degree	
(c)	$\left(\frac{1\times5-2\times4}{3},\frac{3\times5-2\times9}{3}\right)$	PE2 • Correct numerical expression 2
	= (-1, -1)	• $\left(\frac{13}{7}, \frac{33}{7}\right)$ from internal division
		OR • Makes some progress with external division
(d)	$\frac{2}{x-5} \ge 3, x \ne +5$ $(x-5) \times 2 - 3(x-5)^2 \ge 0$	Correct answer; accept answer displayed on the number line
	$(x-5)(17-3x) \ge 0$	• $5 \le x \le 5\frac{2}{3}$
	1 2 3 4 5 5% 6	OR Significant progress
	$5 < x \le 5\frac{2}{3}$	 x≠5 OR Progress with a correct method 1
e)	$u = \cos x$	HE6 • Correct answer, with or without $+ c \dots 3$
	$du = -\sin x dx$ $I = \int -6(1-u)^3 du$ $= \frac{6}{4}(1-u)^4 + c$	A correct expression in terms of u OR A correct answer in x from a non-trivial incorrect integral in u
	$= \frac{3}{2}(1 - \cos x)^4 + c$	A correct expression for du 1

	Sample answer	Syllabus outcomes and marking guide
(a)	$OX \perp AB$ (angle between tangent and radius at the point of contact is 90°) $\angle ZXB = 90 - \theta$ $XO = OZ \text{ (equal radii)}$ $\angle OZX = \theta \text{ (base angles of an isosceles triangle are equal)}$ $\angle XOZ = 180^{\circ} - 2\theta \text{ (angles in a triangle add to } 180^{\circ}\text{)}$ $\angle XYZ = 90^{\circ} - \theta \text{ (angle at the centre is twice the angle at the circumference standing on the same arc)}$	PE2 PE3 PE6 Clear, logical proof with reasons Proof without reasons OR Two relevant facts with reasons
(b)	Let $\angle PAB = \theta$ $\therefore \angle BCA = \theta$ (alternate segment theorem) $\angle BAP = \angle DQA = \theta$ (corresponding angles BA DQ) $\therefore \angle BCA = \angle AQD$ (both θ) $\therefore ACDQ$ is a cyclic quadrilateral as the exterior angle is equal to the opposite interior angle (i) $f(x) = x^3 + x - 9$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PE2 PE3 PE6 Clear logical proof with reasons
	1.5 < x < 2 ∴ there is a root in 1.5 < x < 2 (ii) $f(x) = x^3 + x - 9$ $f(x_1) = f(2)$ = 1 $f'(x_1) = 3(2)^2 + 1$ = 13 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ = $2 - \frac{1}{13}$ = $1\frac{12}{13}$	PE3 Correct answer

Question 2	(Continued)		
	Sample answer		Syllabus outcomes and marking guide
(d) To pro	ove $4 \times 2^n + 3^{3n}$ is divisible by 5 for integers $n \ge 0$:	HE	Correct proof including all steps 4
•	Test for $n = 0$. $4 \times 2^{0} + 3^{0} = 5$ true for $n = 0$.		Significant progress towards a proof OR A 'correct' proof with a minor fault 3
7.	ssume $4 \times 2^k + 3^{3k}$ is divisible by 5 for intergers $k \ge 0$. $4 \times 2^k + 3^{3k} = 5M$ for an integer M . quired to prove $4 \times 2^{k+1} + 3^{3(k+1)} = 5J$, for an integer J .		Some progress OR A 'correct' proof with errors 2
• If the diviple of t	Proof $4 \times 2^{k+1} + 3^{3(k+1)}$ $= 4 \times 2 \times 2^k + 3^3 \times 3^{3k}$ $= 8 \times 2^k + 3^3 \times [5M - 4 \times 2^k]$ $= 2^k[8 - 27 \times 4] + 5M \times 3^3$ $= -100 \times 2^k + 5M \times 3^3$ $= 5[-20 \times 2^k + M \times 3^3]$ As M is an integer, K is an integer, then $[-20 \times 2^k + M \times 3^3]$ is an integer also $ 4 \times 2^{k+1} + 3^{3(k+1)} = 5J$, for an integer J . $$ The expression is divisible by 5. The expression is divisible by 5 for a value of n , then it is is is ble by 5 for the following integral value of n . It has a shown to be divisible by 5 for $n = 0$ and so is divisible 5 for $n = 1$, $n = 2$ etc.		One part of the proof correct

TENME1_SS_06.FM

Question 3	
Sample answer	Syllabus outcomes and marking guide
(a) $(2x-7)^7$ Term = ${}^7C_3(2x)^3(-5)^4$ = ${}^7C_3 \times 8 \times 625x^3$ Coefficient = $2^3 \times 5^4 \times {}^7C_3$ or 175 000	 Correct answer: either 2³ × 5⁴ × ⁷C₃ or 175 000 or equivalent
Product of roots $= \frac{-d}{a}$ $1 \times -2 \times \alpha = \frac{8}{2}$ $\therefore \alpha = -2$ $\therefore \text{ two roots are the same}$ y 2 -3 -2 -1 0 -2 -4 -6 -8 $y = 2x^{2} + 6x^{2} - 8$ The x-axis is a tangent to the polynomial at $x = -2$.	 PE3 HE7 α = -2 and a correct geometrical significance

Question 3	(Continued)	
	Sample answer	Syllabus outcomes and marking guide
(c) (i)	$\ddot{x} = 0$ $\dot{x} = C_1$	HE3 • Correct derivations
	1	Significant progress
	10 5 30° 5√3	Some progress
	$\dot{x} = 5\sqrt{3}$ from initial conditions	
	Starts at $x = 0$, $\therefore 0 = 0 + C_2$	
	$x = 5\sqrt{3}t$	
	$\ddot{y} = -10$	
	$\dot{y} = -10t + C_3$	
	When $t = 0$, $y = 5 \implies C_3 = 5$	
	$\dot{y} = -10t + 5$	
	$y = -5t^2 + 5t + C_4$	
	When $t = 0$, $y = 60 \implies C_4 = 60$	
	$y = -5t^2 + 5t + 60$	
(ii)	Max. height when $y = 0$ - $10t + 5 = 0$	PE3
	$\therefore t = \frac{1}{2}$	
	Max. height = $-5(\frac{1}{2})^2 + 5(\frac{1}{2}) + 60$	OR • The height from their value of t for
	= 61.25 m	$\dot{y} = 0 \dots 1$
(iii)		HE3
(iii)	Ball hits ground when $y = 0$. $-5t^2 + 5t + 60 = 0$	• Correct answer
	$t^2 - t - 12 = 0$	
	(t-4)(t+3)=0	
	Since $t \ge 0$, $t = 4$ seconds.	
(iv)	$x = 5\sqrt{3}t \Rightarrow t = \frac{x}{5\sqrt{3}}$	HE3 Correct Cartesian equation
	$y = -5\left(\frac{x}{5\sqrt{3}}\right)^2 + 5\left(\frac{x}{5\sqrt{3}}\right) + 60$	$\bullet t = \frac{x}{5\sqrt{3}}$
	$= -\frac{x^2}{15} + \frac{x}{\sqrt{3}} + 60$	OR Other progress towards a solution 1

Que	stion 4	
	Sample answer	Syllabus outcomes and marking guide
(a)	I can take notes:	HE6
	1 at a time ${}^5C_1 = 5$	• Correct answer
	2 at a time ${}^5C_2 = 10$	Attempts to use appropriate strategy
	3 at a time ${}^{5}C_{3} = 10$	
	4 at a time ${}^{5}C_{4} = 5$	
	5 at a time ${}^5C_5 = 1$	
	Total = 31	
(b)	(i) 81	PE3 • Correct answer
	(ii) 2 7 6 5 4 3 2 1 1	HE3 • Correct answer in any form.
	Number of ways left-handers can be in 1 st and 9 th	
	positions = $2 \times 7!$	e.g. $\frac{2 \times 7!}{9!}$, $\frac{10\ 080}{9!}$, $\frac{1}{36}$
	Probability = $\frac{2 \times 7!}{9!}$	
	(iii) Binomial expression = (out + not out) ⁵	HE3
	$Pr(out) = \frac{1}{4}$ $Pr(not out) = \frac{3}{4}$	Correct numerical expression
	4 4 Need (0 out + 1 out + 2 out)	
		• Tree diagram 1
	$= {}^{5}C_{0}\left(\frac{1}{4}\right)^{0}\left(\frac{3}{4}\right)^{5} + {}^{5}C_{1}\left(\frac{1}{4}\right)^{1}\left(\frac{3}{4}\right)^{4} + {}^{5}C_{2}\left(\frac{1}{4}\right)^{2}\left(\frac{3}{4}\right)^{3}$	
	$=\frac{3^5}{4^5} + \frac{5 \times 3^4}{4^5} + \frac{5 \times 4 \times 3^3}{2 \times 4^5}$	
	$=\frac{243+405+270}{1024}$	
	$=\frac{459}{512}$	
	512	
:)	$(x-1)(x^5 + x^4 + x^3 + x^2 + x + 1) = x^6 - 1$	HE7
	$x^6 - 1 = 0$ has 2 real solutions $x = -1, +1$	Correct expansion and 1 real solution 2
	$(x-1)(x^5 + x^4 + x^3 + x^2 + x + 1) = x^6 - 1$	• Correct expansion
	has 2 real solutions $x = -1$, +1	
	$x^5 + x^4 + x^3 + x^2 + x + 1 = 0$	
	has only 1 real solution, $x = -1$	

Question 4	(Continued) Sample answer	Syllabus outcomes and marking guide
(d) (i)	$P(2ap, ap^{2}) Q(2aq, aq^{2})$ $M = \left(\frac{2ap + 2aq}{2}, \frac{ap^{2} + aq^{2}}{2}\right)$ $M = \left(a(p+q), \frac{a}{2}(p^{2} + q^{2})\right)$	PE3 Correct demonstration
(ii)	$x = a(p+q) \qquad y = \left(\frac{a}{2}(p^2 + q^2)\right)$ $y = \frac{a}{2}\{(p+q)^2 - 2pq\}$ $y = \frac{a}{2}\{(p+q)^2 + 2\}$ $y = \frac{a}{2}\left(\frac{x^2}{a^2} + 2\right)$ $y = \frac{x^2}{2a} + a$ $x^2 = 2a(y-a)$ which is a parabola with vertex at $(0, a)$ and focal length $\frac{1}{2}a$.	PE3 HE7 • Correct equation and geometrical description

Question 5	
Sample answer	Syllabus outcomes and marking guide
(a) $\int 2\sin^2 4x dx = 2 \times \frac{1}{2} \times \int (1 - \cos 8x) dx$	HE6 • Correct answer (with or without the C) 2
$=x-\frac{1}{8}\sin 8x+C$	• Attempts to make use of double angle (2θ) results 1
(b) (i) $\frac{d}{dx} \left(\frac{1}{2} v^2 \right) = \frac{1}{2} \times 2 \times v \times \frac{dv}{dx}$	• A correct proof
$=v\frac{dv}{dx}$	
$=\frac{dx}{dt}\times\frac{dv}{dx}$	
$=\frac{dv}{dt}$	
$=\frac{d^2x}{dt^2}$	
(ii) $v^2 = 72 - 12x - 4x^2$	HE3 • Correct solution
$\frac{1}{2}v^2 = 36 - 6x - 2x^2$	• Use of $\frac{d}{dr}(\frac{1}{2}v^2)$
$\ddot{x} = -6 - 4x$ $= -4\left(x + 1\frac{1}{2}\right)$	11. L
It is SHM as it is in the form	
$\ddot{x} = -n^2x$	
(iii) $n=2 \Rightarrow \text{period} = \pi$	HE5
Centre of motion of $x = -1\frac{1}{2}$.	• Period = π , AND amplitude = $4\frac{1}{2}$ 3
It stops when $x^2 + 3x - 18 = 0$	• Either period = π
when $(x-3)(x+6) = 0$	OR
It stops at $x = +3$ and $x = -6$ From -6 to $+3$ is 9 units.	• Amplitude = $4\frac{1}{2}$
$2 \times \text{amplitude} = 9$	Company of the second of the s
-	 Some progress toward a solution, e.g. puts v = 0
\therefore amplitude = $4\frac{1}{2}$	OR
	• Finds centre of motion

Question 5	(Continued) Sample answer	Syllabus outcomes and marking guide
(c) (i)	When $t = 0$, $T = 18$. $18 = -19 + Ae^{0}$ $A = 18 + 19$ $A = 37$	HE3 • $18 = -19 + Ae^0$ or equivalent
(ii)	$t = 5 T = 3$ $3 = -19 + 37e^{-5k}$ $e^{-5k} = \frac{22}{37}$ $k = -\frac{1}{5}\log_e \frac{22}{37}$ When $T = -18.9$, $t = ?$ $-18.9 = -19 + 37e^{-kt}$ $\Rightarrow 370e^{-kt} = 1$ $t = -\frac{\log_e \left(\frac{1}{370}\right)}{k}$ $t = 57 \text{ minutes (correct to the nearest minute)}$	HE3 • Correct answer (ignore rounding of final answer)

Question 6	
Sample answer	Syllabus outcomes and marking guide
(a) $\int_{\sqrt{3}}^{3} \frac{12}{x^2 + 9} dx = \left[\frac{12}{3} \tan^{-1} \frac{x}{3} \right]_{\sqrt{3}}^{3}$ $= 4 \left[\tan^{-1} 1 - \tan^{-1} \frac{1}{\sqrt{3}} \right]$ $= 4 \left[\frac{\pi}{4} - \frac{\pi}{6} \right]$ $= \frac{\pi}{3}$	• Correct value $4\left[\frac{\pi}{4} - \frac{\pi}{6}\right]$
(b) LHS = $\frac{2\sin 2\theta \cos 2\theta}{\cos 2\theta}$ = $2\sin 2\theta$ = $2 \times 2\sin \theta \cos \theta$ = $4\sin \theta \cos \theta$ = RHS	PE2 • A correct proof
(c) (i) $ = \frac{n+1}{C_8 \times {}^8C_{n-3}} $ $ = \frac{(n+1)!}{8! \times (n+1-8)!} \times \frac{8!}{(n-3)! \times [8-(n-3)]} $ $ = \frac{(n+1)!}{(n-7)!(n-3)!(11-n)!} $	PE3, HE3 Correct answer
(ii) $n+1 \ge 0$ $(n-7) \ge 0$ $n-3 \ge 0$ $(11-n) \ge 0$ $n \ge -1$, $n \ge 7$, $n \ge 3$, $n \le 11$ $n \ge 7$ and $n \le 11$ i.e. $n = 7, 8, 9, 10$ or 11 i.e. $n = 7, 8, 9, 10$ or 11	PE3, HE3 • Correct answer

Commission of Street

Que	stion 6 (Continued)	
	Sample answer	Syllabus outcomes and marking guide
Que (d)		H5 Correct solution by any method
	$ \frac{2t}{1+t^2} - \frac{1-t^2}{1+t^2} = \sqrt{2} $ $ 2t - 1 + t^2 = \sqrt{2} + \sqrt{2}t^2 $ $ (\sqrt{2} - 1)t^2 - 2t + \sqrt{2} + 1 = 0 $ $ t = \frac{2 \pm \sqrt{4 - 4(\sqrt{2} - 1)(\sqrt{2} + 1)}}{2(\sqrt{2} - 1)} $ $ = \frac{2 \pm \sqrt{0}}{2(\sqrt{2} - 1)} $ $ = \frac{1}{\sqrt{2} - 1} $ $ = \sqrt{2} + 1 $ $ \therefore \tan \frac{\theta}{2} = \sqrt{2} + 1 $ $ \therefore \frac{\theta}{2} = 67.5^{\circ} \text{ or } 247.5^{\circ} $ $ \therefore \theta = 135^{\circ} \text{ or Not in domain} $ $ \therefore \theta = \frac{3\pi}{4} \text{ in } 0 \le \theta \le 2\pi $	

TENME1 SS 06.FM

11

Question 7		
	Sample answer	Syllabus outcomes and marking guide
(a) (i)	$e^{0.81} = 2.25$ (to 3 significant figures)	H3 • Correct value with 3 significant figures
(ii)	$\log_{e} V = \log_{e} 8R^{3} - 0.81$ but $e^{0.81} = 2.25$ $\log_{e} e^{0.81} = \log_{e} 2.25$ $\Rightarrow 0.81 = \log_{e} 2.25$ $\log_{e} V = \log_{e} 8R^{3} - \log_{e} 2.25$ $\log_{e} V = \frac{\log_{e} 8R^{3}}{2.25}$ $V = \frac{8R^{3}}{2.25} \times \frac{4}{4}$ $V = \frac{32R^{3}}{9}$	H3, H4, HE7 Correct answer – any method Makes significant progress Makes some progress.
(iii)	$\frac{dR}{dt} = 0.02 \text{ metres/year}$ $\frac{dV}{dt} = \frac{dV}{dR} \times \frac{dR}{dt}$ $\frac{dV}{dR} = \frac{32 \times 3R^2}{9}$ $\therefore \frac{dV}{dt} = \frac{32 \times 3 \times (1.2)^2 \times 0.02}{9}$ $\frac{dV}{dt} = 0.3072 \text{ or } 0.31 \text{ m}^3/\text{year}$	HE5 • Correct answer – ignore rounding 2 • $\frac{dV}{dt} = \frac{dV}{dR} \times \frac{dR}{dt}$ or similar correct equation OR • $\frac{dR}{dt} = 0.02$

$\frac{d}{dt} = \frac{d}{dt} = \frac{1}{dt} = \frac{1}{dt}$ HE4	omes and marking guide
$dx^{(d)}$ $dx^{(d)}$ A correct dem	nonstration
$= \left(\frac{1}{\sqrt{1-x^2}} + \frac{-1}{\sqrt{1-x^2}}\right)$ • $\frac{d}{dx}(\sin^{-1}x + \cos^{-1}x)$	$\cos^{-1}x)=0$
= 0 OR	
$\therefore \sin^{-1}x + \cos^{-1}x$ has a constant value • Evaluation of	$\sin^{-1}x + \cos^{-1}x \dots \dots$
Let $x = 0$.	
$\Rightarrow \sin^{-1}0 + \cos^{-1}0 = \frac{\pi}{2}$	
$\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$	
(ii) $\sin^{-1}(-x) = -\sin^{-1}x$ HE4, HE7 • Correct value i	in any form 4
$\cos^{-1}(-x) = \pi - \cos^{-1}x$	
-i1(4)1(4) r	ogress as well as values for $cs^{-1}(-x)$ 3
	ons for $\sin^{-1}(-x)$ and
$\Rightarrow \cos^{-1}\left(\frac{2}{3}\right) = k + \pi + \sin^{-1}\left(\frac{2}{3}\right)$	
From (i): • Either $\sin^{-1}(-x)$	$x) = -\sin^{-1}x$
$\sin^{-1}\left(\frac{2}{3}\right) = -\left[-\cos^{-1}\left(\frac{2}{3}\right) + \frac{\pi}{2}\right] \qquad \qquad \text{OR}$ • $\cos^{-1}(-x) = \pi$	$-\cos^{-1}x$
$\therefore \cos^{-1}\left(\frac{2}{3}\right) = k + \pi + \left[\frac{\pi}{2} - \cos^{-1}\left(\frac{2}{3}\right)\right]$	
$2\cos^{-1}\left(\frac{2}{3}\right) = k + \pi + \frac{\pi}{2}$	
$\Rightarrow 4\cos^{-1}\left(\frac{2}{3}\right) = 2k + 3\pi$	
$\therefore \cos^{-1}\left(\frac{2}{3}\right) = \frac{2k+3\pi}{4}$	