

HSC Trial Examination 2006

Mathematics Extension 2

This paper must be kept under strict security and may only be used on or after the morning of Tuesday 8 August, 2006 as specified in the Neap Examination Timetable

General instructions

Reading time – 5 minutes.

Working time - 3 hours.

Board-approved calculators may be used.

Write using blue or black pen.

A table of standard integrals is provided at the back of this paper.

All necessary working should be shown in every question.

Total marks - 120

Attempt questions 1-8.

All questions are of equal value.

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2008 HSC Mathematics Extension 2 examination.

Neap Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to arity party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Copyright © 2006 Neap ASH ADBROWSES PO BOX 214 St Leonards NSW 2065 Tel: (02) 9438 1386 Fax: (02) 9438 1385 TERMEZ, DAJOS FM

Total marks 120

Attempt Questions 1-8

All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks

Question 1 (15 marks) Use a SEPARATE writing booklet.

Consider the function $g(x) = 4\sqrt{x} - 2x$.

(a) Write down the domain of g(x).

1

(b) Find the x intercepts of the graph of y = g(x).

1

(c) Show that the curve y = g(x) is concave downwards for all x > 0.

1

1

1

(d) Find the coordinates of the stationary point and determine its nature.

1 1 1

(e) Sketch the graph of y = g(x), clearly showing all essential features.

(f) Hence, by consideration of the graph of y = g(x), sketch each of the following on separate diagrams, showing all essential features:

......

(i) y = |g(x)|

(ii) y = g(x-2)

2

(iii) y = g(|x|)

2

2

(iv) |y| = g(x)

2

(v) $y = \frac{1}{g(x)}$.

2

 $\label{eq:Question 2} \textbf{Question 2} \ \ (15 \ \text{marks}) \ \text{Use a SEPARATE writing booklet}.$

Marks

(a) Simplify $\frac{\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right)\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)}{\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}}, \text{ giving your answer in the form } a + bi.$

(b) Find real numbers p and q such that

3

$$(p+qi)(1-2i) = (1-p)-qi.$$

(c) By considering the complex number z = x + iy in the Argand plane, sketch the locus of the following on separate Argand diagrams.

(i) $\arg z = \frac{\pi}{3}$

1

(ii) $\arg \bar{z} = \frac{\pi}{3}$

1

(iii) $arg(-z) = \frac{\pi}{3}$

1

(d) Let $w = r(\cos \phi + i \sin \phi)$ where ϕ is an acute angle. With the aid of a suitable diagram, or otherwise:

(i) show that the distance between w and \overline{w} in the complex plane is $2r\sin\phi$

1

2

(ii) find $(w + \overline{w})$.

e) If z = x + iy is any complex number, use only a labelled sketch to illustrate that

 $|z-2| = |\bar{z}-2|$.

(f) Sketch the region of the complex plane for which the complex number z = x + iy has a positive real part and $|z + 3i| \le 2$.

2

Question 3 (15 marks) Use a SEPARATE writing booklet.

(a) If p, q, and r are the roots of the equation $x^3 + 4x^2 - 3x + 1 = 0$, find the equation whose roots are

$$\frac{1}{p}$$
, $\frac{1}{q}$ and $\frac{1}{r}$.

- (b) Find the roots of $3x^3 26x^2 + 52x 24 = 0$, given that the roots are in geometric progression.
- (c) (i) Let k be a zero of a polynomial F(x) and also of its derivative F'(x). Prove that k is a zero of F(x) of multiplicity at least 2.
 - (ii) Show that y = 1 is a double root of the equation 2

$$y^{2t} - ty^{t+1} = 1 - ty^{t-1}$$

where t is a positive integer.

- (d) Consider the polynomial $k(t) = t^4 + at^3 + bt^2 + at + 1$, where a and b are real numbers.
 - (i) Show that if θ is a zero of k(t), then $\frac{1}{\theta}$ is also a zero of k(t).
 - (ii) Hence, or otherwise, write down all four zeros of k(t), given that (1+i) is a zero of k(t). (There is no need to calculate a or b.)

- Question 4 (15 marks) Use a SEPARATE writing booklet.
- (a) Find $\int e^x (1+e^x)^5 dx$. 2
- (b) Find $\int \frac{dt}{\sqrt{7+6t-t^2}}$.
- (c) Using the substitution $t = \tan \frac{\theta}{2}$, find $\int \frac{2}{4 + 3\sin\theta} d\theta$.
- (d) Find $\int \frac{y^5 7y^2 + 8}{y^3 8} dy$.
- (e) If $U_m = \int_0^k (k^2 x^2)^m dx$ for $m \ge 1$, show that $U_m = \frac{2k^2 m}{2m+1} U_{m-1}$.

TENME2_QA_08.FM

Marks

2

Marks

Question 5 (15 marks) Use a SEPARATE writing booklet.

(a) The diagram below shows a chord PQ of the circle $x^2 + y^2 = a^2$. The coordinates of P and Q are $(a\cos\alpha, a\sin\alpha)$ and $(a\cos\beta, a\sin\beta)$ respectively, where α and β are parameters. O is the centre of the circle and M is the midpoint of PQ.

(i) Write down the coordinates of M.

1

- (ii) Write down a relationship between α and β , given that PQ subtends a right angle at the origin.
- (iii) Express the coordinates of M in terms of α .
- v) Find the equation of the locus of M.

3

1

1

1

1

(b) The ellipse E has the equation

$$4x^2 + 9y^2 = 36.$$

(i) Write down:

- (α) its eccentricity
- (β) the coordinates of its foci S and S'
- (γ) the equation of each directrix
- (δ) the length of the major axis.
- (ii) Sketch the ellipse E. Show the x and y intercepts as well as the features found in parts (β) and (γ) of part (i) above.

Ouestion 5 continues on page 7

TENMEZ_QA_GEFM Copyright © 2006 Neap

Question 5 (continued)

The diagram below shows the hyperbola $xy = c^2$. The point $P\left(ct, \frac{c}{t}\right)$ lies on the curve, where $t \neq 0$. The normal at P intersects the straight line y = x at N. O is the origin.

(i) Prove that the equation of the normal at P is

 $y = t^2x + \frac{c}{t} - c^3.$

(ii) Find the coordinates of N.

Copyright © 2006 Neap

1

1

2

(iii) Show that triangle OPN is isosceles.

End of Question 5

Question 6 (15 marks) Use a SEPARATE writing booklet.

The region enclosed by the parabola $y = \frac{1}{4}(2x-5)^2$ and the straight line $y = 6\frac{1}{4}$ is rotated about the y-axis.

Use the method of cylindrical shells to find the exact volume of the solid formed.

The region bounded by the parabolas $y = 6 - x^2$ and $y = \frac{1}{2}x^2$ forms the base of a solid.

Cross-sections by planes perpendicular to the y-axis are semicircles, with their diameters in the base of the solid.

(i) Find the points of intersection of the two parabolas.

1

Find the volume of the solid.

- Consider the complex number $z = \cos \alpha + i \sin \alpha$.
 - (i) Prove that $z^n \frac{1}{z^n} = 2i \sin n\alpha$.

2

(ii) Expand $\left(z-\frac{1}{z}\right)^3$, and use the result from part (i) to show that

2

$$\sin^3 \alpha = \frac{3}{4} \sin \alpha - \frac{1}{4} \sin 3\alpha.$$

(iii) Below is a sketch of $y = \sin^3 \alpha$, for $0 \le \alpha \le 2\pi$.

2

Find the area of the region between the curve and the α -axis, for $0 \le \alpha \le 2\pi$.

TENME2_QA_06.FM

Marks

Ouestion 7 (15 marks) Use a SEPARATE writing booklet.

The diagram below shows a cyclic quadrilateral PQRS circumscribed by a circle. The diagonals of this quadrilateral meet at H. K is a point on QS such that angle SPR equals angle QPK.

Show that the triangles *POK* and *PRS* are similar.

2

Show that the triangles PQR and PKS are similar.

2

Hence prove Ptolemy's theorem:

3

"In any cyclic quadrilateral, the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals."

That is, prove that in this cyclic quadrilateral PQRS,

$$PQ \times RS + PS \times QR = PR \times QS$$

A body is projected vertically upwards from the ground with initial velocity v_0 in a medium that produces a resistance force per unit mass of kv^2 , where v is the velocity and k is a positive constant.

Take acceleration due to gravity as $g \text{ m s}^{-2}$.

(i) Prove that the maximum height H of the body above the ground is

$$H = \frac{1}{2k} \log_e \left(1 + \frac{k v_0^2}{g} \right).$$

Copyright © 2006 Neap

(ii) Show that in order to double the maximum height reached, the initial velocity must be increased by a factor of

TENME2_QA_06.FM

$$(e^{2kH}+1)^{\frac{1}{2}}$$
.

5

2

Question 8 (15 marks) Use a SEPARATE writing booklet.

(a) On a racetrack for go-karts, a circular bend of radius 10 metres is banked at 45° to the horizontal. Given that the maximum frictional force R (up or down the bank) is at most $\frac{1}{9}$ of the normal reaction N, find the range of speeds (in exact form) at which a go-kart of mass m kilograms can safely negotiate the bend.

Take the acceleration due to gravity to be 10 m s⁻².

(b) (i) Prove that
$$\frac{1}{2p+1} + \frac{1}{2p+2} > \frac{1}{p+1}$$
, for all $p > 0$.

(ii) Consider the statement

$$\chi(m): \frac{1}{m+1} + \frac{1}{m+2} + \dots + \frac{1}{2m} \ge \frac{37}{60}.$$

Show by mathematical induction that $\chi(m)$ is true for all integers $m \ge 3$.

(iii) The diagram below shows the graph of $x = \frac{1}{t}$, for t > 0.

(α) By comparing areas, show that

$$\int_{m}^{m+1} \frac{1}{t} dt > \frac{1}{m+1}.$$

 (β) Hence, without using a calculator, show that

$$\log_e 2 > \frac{37}{60}$$

End of paper

STANDARD INTEGRALS

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \ x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} \, dx \qquad = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

Note: $\ln x = \log_e x$, x > 0

TENME2_QA_08.FM

1

3

HSC Trial Examination 2006

Mathematics Extension 2

Solutions and marking guidelines

Neap Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap No Heap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap

	estion 1	
	Sample answer	Syllabus outcomes and marking guide
(a)	$g(x) = 4\sqrt{x} - 2x$ The domain of $g(x)$ is $x \ge 0$.	E6 • Correct domain
(b)	Let $g(x) = 0$ for x intercepts	E6
	$4\sqrt{x} - 2x = 0$	• Correct intercepts
	$x = 2\sqrt{x}$	
	$x^2 = 4x$	
	$x^2 - 4x = 0$	
	x(x-4)=0	
	x = 0 or 4	
	$g(x) = 4x^{\frac{1}{2}} - 2x$	E6
(c)		• Correct working
	$g'(x) = 2x^{-\frac{1}{2}} - 2$	
	$g''(x) = 2 \times -\frac{1}{2}x^{-\frac{3}{2}}$	
	$g''(x) = -\frac{1}{\sqrt{x^3}}$	
	Now $\frac{1}{\sqrt{x^3}} > 0$ for $x > 0$	
	Hence $g''(x) < 0$ for $x > 0$	
	$\therefore y = g(x)$ is concave downwards for all $x > 0$.	
i)	For stationary points	E6
	g'(x) = 0	• Correct solution
	$\frac{2}{\sqrt{x}} - 2 = 0$	
	$\sqrt{x} = 1$	
	x = 1 and g(1) = 2	
	(1, 2) is a maximum because the curve is concave downwards.	·
)	$y = g(x)$ y_{\blacktriangle}	E6
		Correct graph

Question 1	(Co	ntinued) Sample answer	Syllabus outcomes and marking guide
(f) (i)	y = g(x)	2	E6 Correct graph 2 Substantially correct but missing one of intercepts, turning points or correct behaviour at end points. 1
(ii)	y = g(x-2)	y 2 1 0 1 2 3 4 5 0 x	E6 Correct graph
(iii)	y = g(x)	1 2 2 -5 4 -3 -2 -10 1 2 3 4 5 x	E6 Correct graph
(iv)	y = g(x)	y 2 1 0 1 2 3 4 5 x	Correct graph
(v) ;	4	5 4 3 2 1	Correct graph

~	estion 2 Sample answer	Syllabus outcomes and marking guide
(a)	$\frac{\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right)\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)}{\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)}$	E1 Correct answer. 2 Substantially correct
	$= \cos\left(\frac{5\pi}{12} + \frac{3\pi}{4} - \frac{2\pi}{3}\right) + i\sin\left(\frac{5\pi}{12} + \frac{3\pi}{4} - \frac{2\pi}{3}\right)$ $= \cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$ $= 0 + i$	
(b)	$(p+qi)(1-2i) = (1-p)-qi$ $p-2pi+qi-2qi^2 = (1-p)-qi$ $(p+2q)+(-2p+q)i = (1-p)-qi$ Equating real and imaginary parts $p+2q=1-p \Rightarrow 2p+2q=1 (1)$ $-2p+q=-q \Rightarrow 2p-2q=0 (2)$ $4p=1$ Solving (1) and (2) simultaneously, $p=\frac{1}{4}$ $\therefore q=\frac{1}{4}$	E1 Correct solution
 ;)	(i) $\arg z = \frac{\pi}{3}$ $\lim z$ $\frac{\pi}{3}$ $\Re z$	E3 • Correct diagram
	(ii) If $\arg \bar{z} = \frac{\pi}{3}$, then $\arg z = -\frac{\pi}{3}$. Re z	• Correct diagram
	(iii) If $\arg(-z) = \frac{\pi}{3}$, then $\arg(-1) + \arg z = \frac{\pi}{3}.$ $\arg z = \frac{\pi}{3} - \pi$ $= -\frac{2\pi}{3}$ $= -\frac{2\pi}{3}$ Im z $\frac{2\pi}{3}$	E3 • Correct diagram

Question 2	(Continued)	
	Sample answer	Syllabus outcomes and marking guide
(d) Im z	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$\cos \phi + i \sin \phi$) stance between w and $\overline{w} = 2 \times d$	• Correct solution 2 • Correct diagram but no attempt at showing
	$= 2 \times r \sin \phi$ $= 2r \sin \phi$	the result. OR • An incorrect diagram with a reasonable attempt at showing the result
(ii) $w + \overline{w}$ $w + \overline{w}$	is represented by \overrightarrow{OK} = $2t$	E1 • Correct answer
	$\begin{array}{c c} z & & \\ \hline \theta & & \\ \hline -\theta & & \\ \hline \bar{z} & & \\ \end{array}$	Correct solution
$ z + 3i \le 2$ Part of the bound $\lim_{z \to 0} z$ 0 -1 $(0, -3)$	and any is a circle: centre $(0, -3)$ and radius $r = 2$ Re z	Correct diagram with shaded region 2 Substantially correct diagram
-5		

Que	estion 3	
	Sample answer	Syllabus outcomes and marking guide
(a)	$x^3 + 4x^2 - 3x + 1 = 0$ has roots p, q, r . To find the equation whose roots are $\frac{1}{p}, \frac{1}{q}, \frac{1}{r}$. Let $y = \frac{1}{x}$. Since $x = p, q, r, y = \frac{1}{p}, \frac{1}{q}, \frac{1}{r}$. Put $x = \frac{1}{y}$ into the above equation. $\frac{1}{y^3} + \frac{4}{y^2} - \frac{3}{y} + 1 = 0$ $1 + 4y - 3y^2 + y^3 = 0$ Hence the required equation in x is: $x^3 - 3x^2 + 4x + 1 = 0$	Correct solution Correct approach with no more than one algebraic error Reasonable attempt at solution 1
(b)	$3x^3 - 26x^2 + 52x - 24 = 0$ Let the roots be $\frac{\alpha}{r}$, α , αr , where α is a root and r is the common ratio of the geometric progression. Sum of roots: $\frac{\alpha}{r} + \alpha + \alpha r = \frac{26}{3}$ $\alpha \left(\frac{1}{r} + 1 + r\right) = \frac{26}{3} \dots (1)$ Product of roots: $\frac{\alpha}{r} \times \alpha \times \alpha r = 8$ $\alpha = 2 \dots (2)$ Substitute into (1): $\frac{1}{r} + 1 + r = \frac{13}{3}$ $3r^2 - 10r + 3 = 0$ $(3r - 1)(r - 3) = 0$ $r = 3 \text{ or } \frac{1}{3}$ When $r = 3$ the roots are $\frac{2}{3}$, 2, and 6.	• Correct roots

Question 3		(Continued)		
		Sample answer	Syllabus outcomes and marking guide	
(c)	(i)	By the factor theorem, since k is a zero of $F(x)$,	E4	
		F(x) = (x - k)Q(x) for some polynomial $Q(x)$.	Correct reasoning	
		Differentiating, $F'(x) = Q(x) + (x - k)Q'(x)$	Correct approach with poor reasoning	
		so $F'(k) = Q(k) + 0$		
		and since k is a zero of $F'(x)$,	440	
		Q(k) = 0		
		Again by the factor theorem, $(x-k)$ is a factor of $Q(x)$, and so $(x-k)^2$ is a factor of $F(x)$.		
			E4	
	(ii)	$y^{2t} - ty^{t+1} = 1 - ty^{t-1}$	• Correct reasoning	
		$y^{2t} - ty^{t+1} + ty^{t-1} - 1 = 0$	Correct approach with no more than one	
		Let $P(y) = y^{2t} - ty^{t+1} + ty^{t-1} - 1$	algebraic error	
		P(1) = 1 - t + t - 1 = 0		
		$P'(y) = 2ty^{2t-1} - t(t+1)y^{t} + t(t-1)y^{t-2}$		
		$P'(1) = 2t - t^2 - t + t^2 - t = 0$		
		So $y = 1$ is a zero of $P(y)$ and $P'(y)$.		
		Hence it must be a double root of $P(y) = 0$.		
d)	(i) $k(t) = t^4 + at^3 + bt^2 + at + 1$	E3, E4		
		Since θ is a zero, $k(\theta) = 0$.	• Correct solution 2	
		That is, $\theta^4 + a\theta^3 + b\theta^2 + a\theta + 1 = 0$ (1)	• Substantially correct	
		Hence $k\left(\frac{1}{\theta}\right) = \frac{1}{\theta^4} + \frac{a}{\theta^3} + \frac{b}{\theta^2} + \frac{a}{\theta} + 1$		
		$=\frac{1+a\theta+b\theta^2+a\theta^3+\theta^4}{\theta^4}$		
		=0 (by (1))		
((ii)	Since $(1+i)$ is a zero, then using part (i)	E3, E4 • Correct solution	
		$\frac{1}{1+i}$ is also a zero.		
		171	• Substantially correct	
		Realising the denominator, $\frac{1-i}{2}$ is also a zero, since all		
		the coefficients are real numbers.		
		Thus by the conjugate root theorem the roots are		
		$1 + i$, $1 - i$, $\frac{1}{2} + \frac{i}{2}$ and $\frac{1}{2} - \frac{i}{2}$.		

Que	estion 4 Sample answer		Syllabus outcomes and marking guide
(a)	$I = \int e^x (1 + e^x)^5 dx$ $I = \int u^5 du$ $= \frac{u^6}{6} + C$ $I = \frac{1}{6} (1 + e^x)^6 + C$	Let $u = 1 + e^x$ $\frac{du}{dx} = e^x$ $du = e^x dx$	Correct solution
(b)	$I = \int \frac{dt}{\sqrt{7 + 6t - t^2}}$ $I = \int \frac{dt}{\sqrt{16 - (t^2 - 6t + 9)}}$ $I = \int \frac{dt}{\sqrt{4^2 - (t - 3)^2}}$ $I = \sin^{-1}(\frac{t - 3}{4}) + C$		Correct solution
(c)	$I = \int \frac{2}{4+3\sin\theta} d\theta$ $\text{Now } \frac{2}{4+3\sin\theta} = \frac{2}{4+3\left(\frac{2t}{1+t^2}\right)}$ $= \frac{2(1+t^2)}{4(1+t^2)+6t}$ $= \frac{2(1+t^2)}{2(2t^2+3t+2)}$ $= \frac{1+t^2}{2t^2+3t+2}$ Hence $I = \int \frac{2dt}{2t^2+3t+2}$ $\text{Now } 2t^2+3t+2=2\left(t^2+\frac{3}{2}t+\frac{9}{16}\right)+$ $= 2\left(t+\frac{3}{4}\right)^2+2\left(1-\frac{3}{4}\right)^2$ $I = \frac{1}{\sqrt{7}}\tan^{-1}\left(\frac{t+\frac{3}{4}}{\sqrt{7}}\right)+C$ $I = \frac{4}{\sqrt{7}}\tan^{-1}\left(\frac{4t+3}{\sqrt{7}}\right)+C$	Let $t = \tan\frac{\theta}{2}$ $\frac{dt}{d\theta} = \frac{1}{2}\sec^2\frac{\theta}{2}$ $2dt = \left(1 + \tan^2\frac{\theta}{2}\right)d\theta$ $= (1 + t^2)d\theta$ $\frac{2dt}{1 + t^2} = d\theta$	Correct solution

TENME2_SS_06.FM

Question 4 (Continued)	
Sample answer	Syllabus outcomes and marking guide
(d) $I = \int \frac{y^5 - 7y^2 + 8}{y^3 - 8} dy$	E8 • Correct solution
$I = \int \frac{y^5 - 8y^2 + y^2 + 8}{(y - 2)(y^2 + 2y + 4)} dy $ #	Correctly applies the method of partial fractions with no more than one algebraic error
$I = \int \frac{y^2(y^3 - 8) + (y^2 + 8)}{(y - 2)(y^2 + 2y + 4)} dy$	• Correctly applies the method of partial fractions to find values for A, B and C 2
$I = \int \left[y^2 + \frac{y^2 + 8}{(y - 2)(y^2 + 2y + 4)} \right] dy$	Makes a reasonable attempt to simplify the integral
Let $\frac{y^2 + 8}{(y - 2)(y^2 + 2y + 4)} = \frac{A}{y - 2} + \frac{By + C}{y^2 + 2y + 4}$	
This identity gives $A = 1$, $B = 0$ and $C = -2$	
$I = \int \left(y^2 + \frac{1}{y - 2} - \frac{2}{y^2 + 2y + 4}\right) dy$	
$I = \int \left[y^2 + \frac{1}{y - 2} - \frac{2}{(\sqrt{3})^2 + (y + 1)^2} \right] dy$	
$I = \frac{y^3}{3} + \ln y - 2 - \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{y + 1}{\sqrt{3}} \right) + C$	
# Note: sometimes it can be more judicious to perform division first.	long

Question	4 (Continued)		
	Sample answer		Syllabus outcomes and marking guide
(e) U_m	$_{\tau}=\int_{0}^{k}(k^{2}-x^{2})^{m}dx,m\geq0$	E:	8 Correct solution
U_m	$= \int_{0}^{k} (k^2 - x^2) \times 1 dx$	•	Substantially correct solution using the method of integration by parts with no more than one algebraic error
Let	$u = (k^2 - x^2)^m \Rightarrow \frac{du}{dx} = m(k^2 - x^2)^{m-1} \times -2x$	•	Correctly forms the following integral but is unable to simplify further 2
	$= -2m(k^2 - x^2)^{m-1}x$ $1 \text{ let } v' = 1 \Rightarrow v = x$		$2m\int_{0}^{k}x^{2}(k^{2}-x^{2})^{m-1}dx$
U_m :	$= \left[x \times (k^2 - x^2)^m \right]_0^k - \int_0^k -2m(k^2 - x^2)^{m-1} x \times x dx$	•	Makes a reasonable attempt to apply the method of integration by parts 1
U_m :	$= [k(k^2 - k^2)^m - 0(0^2 - 0^2)^m] + 2m \int_0^k x^2 (k^2 - x^2)^{m-1} dx$		
U_m =	$= 2m \int_{0}^{k} \frac{x^{2} (k^{2} - x^{2})^{m}}{k^{2} - x^{2}} dx \qquad \frac{x^{2}}{k^{2} - x^{2}} = \frac{k^{2} - (k^{2} - x^{2})}{k^{2} - x^{2}}$ $= \frac{k^{2}}{k^{2} - x^{2}} - 1$		
U_m =	$= 2m \int_0^k (k^2 - x^2)^2 \left(\frac{k^2}{k^2 - x^2} - 1\right) dx$		
$U_m =$	$=2m\int_{0}^{k}\frac{k^{2}(k^{2}-x^{2})^{2}}{k^{2}-x^{2}}dx-2m\int_{0}^{k}(k^{2}-x^{2})^{m}dx$	4	
$U_m =$	$=2mk^{2}\int_{0}^{k}(k^{2}-x^{2})^{m-1}dx-2m\int_{0}^{k}(k^{2}-x^{2})^{m}dx$		
$U_m =$	$=2mk^2U_{m-1}-2mU_m$		
U_m +	$-2mU_m = 2mk^2U_{m-1}$		
$U_m(1$	$(1+2m)=2mk^2U_{m-1}$		
	$U_m = \frac{2mk^2}{2m+1} U_{m-1}$		

TENME2 SS DE.FM

Question 5 Sample answer	Syllabus outcomes and marking guide
(a) (i) $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ $x_M = \frac{a\cos\alpha + a\cos\beta}{2}$ $y_M = \frac{a\sin\alpha + a\sin\beta}{2}$	E9 Correct coordinates
(ii) $\beta - \alpha = 90^{\circ}$	E9 • Correct answer
(iii) $\beta = 90^{\circ} + \alpha$ $x_{M} = \frac{a\cos\alpha + a\cos(90^{\circ} + \alpha)}{2}$ $= \frac{a\cos\alpha - a\sin\alpha}{2}$ $y_{M} = \frac{a\sin\alpha + a\sin(90^{\circ} + \alpha)}{2}$ $= \frac{a\sin\alpha + a\cos\alpha}{2}$	• Correct solution
(iv) $2x = a\cos\alpha - a\sin\alpha (1)$ $2y = a\sin\alpha + a\cos\alpha (2)$ Squaring both sides of (1) and (2) and adding, $4x^2 + 4y^2 = a^2(\cos^2\alpha + \sin^2\alpha - 2\sin\alpha\cos\alpha) +$ $a^2(\sin^2\alpha + \cos^2\alpha + 2\sin\alpha\cos\alpha)$ $4x^2 + 4y^2 = a^2(1 - 2\sin\alpha\cos\alpha + 1 + 2\sin\alpha\cos\alpha)$ $4x^2 + 4y^2 = 2a^2$ $x^2 + y^2 = \frac{a^2}{2}$ Note: the required locus is a circle with centre (0, 0)	Correct solution
and radius $\frac{a\sqrt{2}}{2}$.	

Question 5	5	(Continued)	1
		Sample answer	Syllabus outcomes and marking guide
(b) (i))	4.5 \$ \$4.0 \$ \$4.5 \$	-
	(a)	$4x^{2} + 9y^{2} = 36$ $\frac{x^{2}}{9} + \frac{y^{2}}{4} = 1$ $a = 3, b = 2$ $b^{2} = a^{2}(1 - e^{2})$ $4 = 9(1 - e^{2})$ $\frac{4}{9} = 1 - e^{2}$ $e^{2} = \frac{5}{9}$ $e = \frac{\sqrt{5}}{3}, \text{ since } e > 0$	• Correct eccentricity
	(β)	Foci $(\pm ae, 0) \Rightarrow \pm(\sqrt{5}, 0)$	E4 • Correct foci (using answer from part (i)). 1
	(y)	Directrices $x = \pm \frac{a}{e} \Rightarrow x = \pm \frac{9}{\sqrt{5}}$	E4 • Correct directrices
	(δ)	The major axis is 6 units in length.	E4 • Correct answer
(ii)		$x = \frac{9}{\sqrt{5}}$	Correct diagram showing all necessary information

Question 5	(Continued) Sample answer		Callabara systems and moulting syside
·····	Sample answer		Syllabus outcomes and marking guide
(c) (i)	$xy = c^2$ and $P\left(ct, \frac{c}{t}\right)$		Correct solution
	$y = c^2 x^{-1}$		
	$\frac{dy}{dx} = -c^2 x^{-2} $ #		
	$=-\frac{c^2}{x^2}$		
	At P , gradient of tangent, m_1 :		
	$m_1 = -\frac{c^2}{c^2 t^2} \Rightarrow m_1 = -\frac{1}{t^2}$		
	The gradient of the normal at P is t^2 . Hence the equation of the normal is		
	$y - y_1 = m(x - x_1)$		
	$y - \frac{c}{t} = t^2(x - ct)$		
	$y = t^2 x + \frac{c}{t} - ct^3$	(1)	
	# Note: parametric differentiation is an a	alternative here.	:
(ii)	Put $y = x$	(2)	E4
	Solving (1) and (2)		• Correct coordinates of N
	$x = t^2 x + \frac{c}{t} - ct^3$		
	$t^2x - x = \frac{ct^4 - c}{t}$		
	$x(t^2 - 1) = \frac{c(t^2 - 1)(t^2 + 1)}{t}$	0000	
	$x = \frac{c}{t}(t^2 + 1)$ provided $t \neq \pm 1$	The state of the s	
	Hence N is $\left(\frac{c}{t}(t^2+1), \frac{c}{t}(t^2+1)\right)$	1))	

Question 5	(Continued)	
	Sample answer	Syllabus outcomes and marking guide
(iii)	Show that $OP = NP$ for triangle OPN to be isosceles.	E4
	Using $d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$	• Correct solution 2
	$OP^2 = (ct)^2 + \left(\frac{c}{t}\right)^2$	Substantially correct with no more than one mistake
	$OP^2 = c^2 t^2 + \frac{c^2}{t^2}$	
	$OP^2 = c^2 \left(t^2 + \frac{1}{t^2} \right)$	
	$OP^2 = c^2 \left(\frac{t^4 + 1}{t^2}\right)$	
	$OP = \frac{c}{t} \sqrt{t^4 + 1}$	
	$NP^{2} = \left[\frac{c}{t}(t^{2}+1) - ct\right]^{2} + \left[\frac{c}{t}(t^{2}+1) - \frac{c}{t}\right]^{2}$	
	$NP^{2} = c^{2} \left(\frac{t^{2} + 1}{t} - t\right)^{2} + \frac{c^{2}}{t^{2}} (t^{2} + 1 - 1)^{2}$	
	$NP^2 = \frac{c^2}{t^2} + \frac{c^2}{t^2} (t^4)$	
	$NP = \frac{c}{t}\sqrt{1+t^4}$	
	Hence $NP = OP$ and so triangle OPN is isosceles.	

TENMEZ_SS_06.FM

Question 6

Sample answer

(a) $y = \frac{1}{4}(2x - 5)^2$ and $y = 6\frac{1}{4}$

$$A(x) = 2\pi x \left(6\frac{1}{4} - y\right)$$

$$\Delta V \approx 2\pi x \left(6\frac{1}{4} - y\right) \Delta x$$

Now,
$$\left(6\frac{1}{4} - y\right) = \frac{25}{4} - \frac{1}{4}(2x - 5)^2$$

$$= \frac{1}{4}[25 - (4x^2 - 20x + 25)]$$

$$= \frac{1}{4}(25 - 4x^2 + 20x - 25)$$

$$= \frac{1}{4}(20x - 4x^2)$$

$$= 5x - x^2$$

$$V = \lim_{\Delta x \to 0} \sum_{x=0}^{5} 2\pi x (5x - x^2) \Delta x$$

Hence,
$$V = 2\pi \int_{0}^{5} (5x^{2} - x^{3}) dx$$

$$V = 2\pi \left[\frac{5x^3}{3} - \frac{x^4}{4} \right]_0^5$$

$$V = 2\pi \left[\frac{625}{3} - \frac{625}{4} \right]$$

$$V = \frac{625\pi}{6}$$
 cubic units

Syllabus outcomes and marking guide

|E7

- Correctly uses the method of cylindrical shells with no more than one mistake 3
- Writes the expression for ΔV in terms of $x \neq 2$
- Writes the expression for A(x)

Question 6	(Continued)	
	Sample answer	Syllabus outcomes and marking guide
(ii)	Area of a semicircular disc:	E7 • Correct solution 4
	Δν	Correctly uses the method of cross-sections with no more than one mistake
	$y = 6 - x^2 \qquad \qquad y = \frac{1}{2}x^2$	Writes the following definite integral to determine the volume of the solid 2
	$A = \pi x^2 \times \frac{1}{2} \qquad \qquad A = \pi x^2 \times \frac{1}{2}$	$V = \frac{\pi}{6} \int_{2}^{6} (6 - y) dy + \pi \int_{0}^{2} y dy$
	Volume of discs:	Meleon a reasonable attempt at voing the
	$\Delta V \approx \frac{\pi x^2}{2} \Delta y \qquad \qquad \Delta V \approx \frac{\pi x^2}{2} \Delta y$	Makes a reasonable attempt at using the method of cross-sections
	$V = \lim_{\Delta y \to 0} \sum_{y=2}^{6} \pi \left(\frac{6-y}{2}\right) \Delta y + \lim_{\Delta y \to 0} \sum_{y=0}^{2} \pi \left(\frac{2y}{2}\right) \Delta y$ $V = \frac{\pi}{2} \int_{2}^{6} (6-y) dy + \pi \int_{0}^{2} y dy$	
	$V = \frac{\pi}{2} \int_{2}^{6} (6 - y) dy + \pi \int_{0}^{2} y dy$	
	$V = \frac{\pi}{2} \left[6y - \frac{y^2}{2} \right]_0^6 + \pi \left[\frac{y^2}{2} \right]_0^2$	
	$V = \frac{\pi}{2} [(36 - 18) - (12 - 2)] + \pi \left[\frac{4}{2} - 0 \right]$	
	$V = \frac{\pi}{2}(18 - 10) + 2\pi$	
	$V = 6\pi$ cubic units	
(c) (i)	$z^{n} - \frac{1}{z^{n}} = (\cos\alpha + i\sin\alpha)^{n} - (\cos\alpha + i\sin\alpha)^{-n}$	• Correct solution
	$=\cos n\alpha + i\sin n\alpha - (\cos n\alpha - i\sin n\alpha)$	Substantially correct
	$= \cos n\alpha + i\sin n\alpha - \cos n\alpha + i\sin n\alpha$	

Question 6	(Continued)	1	
	Sample answer		Syllabus outcomes and marking guide
(ii)	Now $z - \frac{1}{z} = 2i\sin\theta$ $(n = 1)$	E3	, E4, E9 Correct solution 2
	$\operatorname{so}\left(z-\frac{1}{z}\right)^3 = 8i^3 \sin^3 \theta$	•	Makes a reasonable attempt to show the result 1
	$-8i\sin^3\theta = z^3 - 3z^2\left(-\frac{1}{z}\right) + 3z\left(-\frac{1}{z}\right)^2 + \left(-\frac{1}{z}\right)^3$		
	$(-8\sin^3\theta)i = z^3 - 3z + \frac{3}{z} - \frac{1}{z^3}$		
	$= \left(z^3 - \frac{1}{z^3}\right) - 3\left(z - \frac{1}{z}\right)$		
	= $2i\sin 3\theta - 3(2i\sin \theta)$, by part (i)		
	$=(2\sin 3\theta -6\sin \theta)i$		
	Hence $-8\sin^3\theta = -6\sin\theta + 2\sin3\theta$		
	$\sin^3\theta = \frac{3}{4}\sin\theta - \frac{1}{4}\sin3\theta$		
(iii)	area = $2 \times (\text{area between } 0 \text{ and } \pi)$	E9	Correct solution
	$=2\int_{0}^{3}\sin^{3}\alphad\alpha$	1	Makes a reasonable attempt to determine the area
	$=2\int_{0}^{\pi} \left(\frac{3}{4}\sin\alpha - \frac{1}{4}\sin3\alpha\right) d\alpha$		
	$=2\left[\frac{3}{4}(-\cos\alpha)-\frac{1}{4}\left(\frac{1}{3}\right)-\cos 3\alpha\right]_0^{\pi}$		
	$=2\left[-\frac{3}{4}\cos\alpha+\frac{1}{12}\cos3\alpha\right]_0^{\pi}$		
	$=2\left[\left(-\frac{3}{4}\right)(-1)+\frac{1}{12}(-1)-\left(-\frac{3}{4}+\frac{1}{12}\right)\right]$		
	$=2\left(\frac{3}{4}-\frac{1}{12}+\frac{3}{4}-\frac{1}{12}\right)$		
	$=2\frac{2}{3}$ square units		

 $=2i\sin n\alpha$

Question 7	(Continued)	
	Sample answer	Syllabus outcomes and marking guide
(b) (i)	height = H	• Correct solution
	+ve	Correct approach with no more than one algebraic error
	motion $mg mkv^2$	• Writes the following equation 2 $\frac{dx}{dv} = -\frac{v}{10 + kv^2}$
	initial velocity = v_0	Draws a correct diagram and finds the equation of motion
	Using $F = ma$, the equation of motion is:	
	$ma = -mg - mkv^2$	
	Now, with $m = 1$ and $a = v \frac{dv}{dx}$ and $g = 10$	
	$v\frac{dv}{dx} = -(10 + kv^2)$	
	$\frac{dv}{dx} = -\frac{10 + kv^2}{v}$	
	$\frac{dx}{dv} = -\frac{v}{10 + kv^2}$	
	$\int_{0}^{H} \frac{dx}{dv} dv = -\int_{v_{0}}^{0} \frac{v}{10 + kv^{2}} dv$	
	$[x]_0^H = -\frac{1}{2k} \int_{v_0}^0 \frac{2kv}{10 + kv^2} dv$	
	$H = -\frac{1}{2k} [\ln(10 + kv^2)]_{v_0}^0$	
	$H = -\frac{1}{2k} \left[\ln 10 - \ln(10 + kv_0^2) \right]$	
	$H = \frac{1}{2k} \ln \left(\frac{10 + kv_0^2}{10} \right)$	

Question 7	(Continued) Sample answer		Syllabus outcomes and marking guide
(b) (ii)	$2kH = \ln\left(\frac{10 + kv_0^2}{10}\right)$	E:	Correct solution
	$\frac{10 + kv_0^2}{10} = e^{2kH}$	•	Correct approach with a reasonable attempt to solve the simultaneous equations3
	$10 + kv_0^2 = 10e^{2kH}$ $kv_0^2 = 10e^{2kH} - 10$	•	Writes the correct pair of simultaneous equations
	$v_0^2 = \frac{10}{k} (e^{2kH} - 1)$ (1)	•	Correctly forms one of the equations 1
	Now, if an initial velocity of u generates the maximum height of $2H$,		
	$u^2 = \frac{10}{k} (e^{2k(2H)} - 1)$ (2)		
	(2)÷(1)		
	$\frac{u^2}{v_0^2} = \frac{e^{4kH} - 1}{e^{2kH} - 1}$		
	$\frac{u^2}{v_0^2} = \frac{(e^{2kH} + 1)(e^{2kH} - 1)}{e^{2kH} - 1}$	The second secon	
	$\frac{u^2}{v_0^2} = e^{2kH} + 1$		
	$u = v_0 \sqrt{e^{2kH} + 1}$		
	Hence the need to increase the initial velocity by a factor of $(e^{2kH} + 1)^{\frac{1}{2}}.$		

Ouestion 8

Sample answer

Syllabus outcomes and marking guide

 $R = \frac{N}{9}$, $\theta = 45^{\circ}$, r = 10 metres, mass = m kg.

For downward movement:

Resolving vertically:

 $mg = N\cos\theta + R\sin\theta$

 $m \times 10 = 9R\cos\theta + R\sin\theta$

(but $\cos \theta = \sin \theta = \frac{1}{\sqrt{2}}$ since $\theta = 45^{\circ}$)

$$10m = \frac{10}{\sqrt{2}}R$$

Resolving horizontally:

 $N\sin\theta - R\cos\theta = \frac{mv^2}{2}$

 $9R\sin\theta - R\cos\theta = \frac{mv^2}{r}$

$$\frac{10}{R} = \frac{\sqrt{2}v^2}{\sqrt{2}}$$

 $\frac{R}{m} = \sqrt{2} \qquad ...(1) \qquad \frac{R}{m} = \frac{\sqrt{2}v^2}{80} ...(2)$ Solving (1) and (2): $\frac{\sqrt{2}v^2}{80} = \sqrt{2} \Rightarrow v = 4\sqrt{5} \text{ m s}^{-1}$

For upward movement:

Resolving vertically: $mg = N\cos\theta - R\sin\theta$

 $10m = 9R\cos\theta - R\sin\theta$

 $10m = \frac{8}{\sqrt{2}}R$

$$\frac{R}{m} = \frac{10\sqrt{2}}{8} \qquad \dots$$

Resolving horizontally:

 $N\sin\theta + R\cos\theta = \frac{mv^2}{2}$

 $9R\sin\theta + R\cos\theta = \frac{mv^2}{10}$

Equating (3) and (4): $\frac{\sqrt{2}v^2}{100} = \frac{10\sqrt{2}}{8}$ $v = 5\sqrt{5} \text{ m s}^{-1}$

Hence $4\sqrt{4} \le v \le 5\sqrt{5}$

5						
Correct solution						

- Substantially correct with no more than one mistake..... 4
- Correctly solves one pair of simultaneous
- Correctly forms one pair of simultaneous
- Makes a reasonable attempt to form one of

Question 8	(Continued)	
	Sample answer	Syllabus outcomes and marking guide
(b) (i)	For $p > 0$, $2p + 1 < 2p + 2$ $\frac{1}{2n+1} > \frac{1}{2n+2}$	E9 • Correct solution
	$\frac{2p+1}{2p+1} > \frac{1}{2p+2} + \frac{1}{2p+2}$	Substantially correct solution
	$\frac{1}{2p+1} + \frac{1}{2p+2} > \frac{2}{2p+2}$	
	$\frac{1}{2p+1} + \frac{1}{2p+2} > \frac{1}{p+1}$	
(ii)	$\chi(m)$ is $\frac{1}{m+1} + \frac{1}{m+2} + \dots + \frac{1}{2m} \ge \frac{37}{60}$	• Correct solution
	for all positive integers $m \ge 3$.	Substantially correct with no more than one
	$\chi(3): \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = \frac{37}{60} \ge \frac{37}{60}$ i.e. true for $m = 3$.	algebraic error
	If $\chi(k)$ is true, then	• Forms the statement for $m = k + 1 \dots 2$
	$\frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{2k} \ge \frac{37}{60}$ (A)	• Shows the result true for $m = 3 \dots 1$
	now on considering $m = k + 1$:	
	$\chi(k+1)\cdot\frac{1}{k+2} + \frac{1}{k+3} + \dots + \frac{1}{2k} + \frac{1}{2k+1} + \frac{1}{2k+2}$	
	$= \left(\frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{2k}\right) + \frac{1}{2k+1} + \frac{1}{2k+2} - \frac{1}{k+1}$	
	$\geq \frac{37}{60}$ (from (A) above) + 0 from part (i), as	
	$\frac{1}{2k+1} + \frac{1}{2k+2} > \frac{1}{k+1} \Rightarrow \frac{1}{2k+1} + \frac{1}{2k+2} - \frac{1}{k+1} > 0$	
	Thus $\chi(k+1)$ is true whenever $\chi(k)$ is true, and $\chi(3)$ is true.	
	Therefore $\chi(m)$ is true for all integers $m \ge 3$.	Nacional and Appendix 15th a

Question 8	(Continued)	
	Sample answer	Syllabus outcomes and marking guide
(b) (iii) (α)	Considering the diagram, $\frac{1}{m+1} \longrightarrow t$ shaded area > area of rectangle $\int_{m}^{m+1} \frac{1}{t} dt > 1 \times \frac{1}{m+1}$	E9 • Correct solution
<i>(β</i>)	$\int_{m}^{m+1} \frac{1}{t} dt > \frac{1}{m+1}$ As in part (α) , $\int_{m+1}^{m+2} \frac{1}{t} dt > \frac{1}{m+2}$ $\int_{m+1}^{m+3} \frac{1}{t} dt > \frac{1}{m+3}$ $\int_{2m-1}^{2m} \frac{1}{t} dt > \frac{1}{2m}$ Adding these inequalities together $\int_{m}^{m+1} \frac{1}{t} dt + \int_{m+1}^{m+2} \frac{1}{t} dt + \dots + \int_{2m-1}^{2m} \frac{1}{t} dt > \frac{1}{m+1} + \frac{1}{m+2} + \dots + \frac{1}{2m}$ So $\int_{m}^{2m} \frac{1}{t} dt > \frac{37}{60}$ from part (ii) $[\log_{e} 2m - \log_{e} m > \frac{37}{60}$ $\log_{e} 2m - \log_{e} m > \frac{37}{60}$ $\log_{e} 2 > \frac{2m}{m} > \frac{37}{60}$ $\log_{e} 2 > \frac{2m}{60}$ $\log_{e} 2 > \frac{37}{60}$ $\log_{e} 2 > \frac{37}{60}$	E9 Correct solution