

HSC Trial Examination 2013

Mathematics

This paper must be kept under strict security and may only be used on or after the morning of Monday 5 August 2013 as specified in the Neap Examination Timetable.

General Instructions

of this paper

Reading time – 5 minutes

Working time – 3 hours

Write using black or blue pen

Board-approved calculators may be used

A table of standard integrals is provided at the back

All necessary working should be shown in every question

Section I - 10 marks

10 multiple-choice questions

Section II - 90 marks

6 short-answer questions

Total marks - 100

Attempt Questions 1-16

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2013 HSC Mathematics Examination.

Neap Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Copyright © 2013 Neap ASH 43 910 000 643 PO Box 214 St Leonards NSW 1590 Tel: (02) 9438 1386 Fax: (02) 9438 1385

HSC Mathematics Trial Examination

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \ x \neq 0, \ \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \ dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx \qquad = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

Note: $\ln x = \log_e x$, x > 0

темссид одязали Copyright © 2013 Neap

Section I – 10 marks Attempt Questions 1 – 10 All questions are of equal value

Answer each question on the multiple-choice answer sheet for Questions 1-10.

- 1. Evaluate $\frac{3.57 \times 0.089}{0.0029 + \sqrt{0.036}}$, giving your answer correct to 2 decimal places.
 - (A) 109.75
 - (B) 1.65
 - (C) 0.32
 - (D) 109.56
- 2. Given that 6x + 2y = 13x 3y. Find the ratio x:y.
 - (A) 5:7
 - (B) 6:2
 - (C) 13:-3
 - (D) 7:5
- 3. Selling a television for \$209.10, a retailer makes a loss of 15% on the cost price.

How much must he sell it for to make a 25% profit?

- (A) \$307.50
- (B) \$261.38
- (C) \$258.30
- (D) \$230.01
- 4. There are 12 girls and x boys in a group. The probability of selecting boy is $\frac{3}{7}$.

How many additional boys will have to join the group so that the probability of selecting a boy at random from the group is $\frac{4}{5}$?

- (A) 9
- (B) 12
- (C) 30
- (D) 39
- 5. Solve for x, |2x+1| = 7
 - (A) x = -3, x = 4
 - (B) x = -3, x = -4
 - (C) x = 3, x = -4
 - (D) x = 3, x = 4

- 6. What is the value of $\int_{0}^{\ln 5} -e^{-x} dx$?
 - (A) -ln5
 - (B)
 - (C) $-\frac{4}{3}$
 - (D) $-e^{-\ln 5}$
- 7. Factorise $m^3 5m^2 36m$ completely.
 - (A) $m(m^2-5m-36)$
 - (B) m(m-6)(m+6)
 - (C) m(m-8)(m+3)
 - (D) m(m-9)(m+4)
- 8. Solve the trigonometric equation $\sin 2\alpha = \frac{-\sqrt{3}}{2}, -\pi \le \alpha \le 0$
 - (A) $\frac{-7\pi}{6}, \frac{-11\pi}{6}$
 - $(B) \quad \frac{7\pi}{6}, \frac{11\pi}{6}$
 - (C) $\frac{\pi}{6}, \frac{5\pi}{6}$
 - (D) $\frac{-\pi}{6}, \frac{-5\pi}{6}$
- 9. In $\triangle ABC$, AB = 6 cm, BC = 8 cm and $B = 60^{\circ}$.

What is the perimeter of $\triangle ABC$ (answer correct to one decimal place)?

- (A) 7.2 cm
- (B) 14.0 cm
- (C) 21.2 cm
- (D) 24.0 cm
- 10. What are the co-ordinates for the vertex of the quadratic $y = x^2 + 6x + 10$?
 - (A) (-3,1)
 - (B) (3,-1)
 - (C) (-1,3)
 - (D) (1,-3)

Marks

2

Section II - 90 marks

Attempt Questions 11-16

All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks

2

2

2

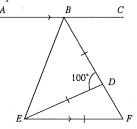
Question 11 (15 marks) Use a SEPARATE writing booklet.

- (a) The straight line y = mx + b has the same gradient as the line 2x + 3y = 17 and passes through the point (6,-2).
 - Find the values of m and b.

(b) Solve the following equations:

(i)
$$2^{x^2-4x} - \frac{1}{8} = 0$$

- (ii) $e^{2x} 7e^x = -6$
- (iii) $2^{x+1} = 3^{x-2}$
- (c) A game involves randomly selecting two marbles from a bag without replacement. The bag contains 6 red marbles and 9 blue marbles. Three teams A, B and C play the game and the team that select two red marbles first gets 100 points. If a team selects two different-coloured marbles, the marbles are replaced and the team gets a second chance to play. If two red marbles are obtained in the second attempt, the team receives 75 points.


Find the probability that:

- (i) team A gets 100 points,
- (ii) team B does not get a second chance,
- (iii) team C gets 75 points.
- (d) Write the exact value of $\cos\left(\frac{\pi}{4}\right) \sin\left(\frac{2\pi}{3}\right)$ with a rational denominator.
- Determine the exact area of the minor segment in a circle of radius 5 cm if the angle subtended at the centre by the arc is $\frac{5}{6}\pi$.

Question 12 (15 marks) Use a SEPARATE writing booklet.

Simplify
$$\frac{1}{\sin^2 \theta} - \frac{1}{\tan^2 \theta}$$

(b) In the diagram, BDF is a straight line and BD = DE = EF. The line ABC is parallel to EF and $\angle BDE = 100^{\circ}$.

NOT TO SCALE

Calculate, stating reasons;

(iii) ∠ABE

Differentiate the following with respect to x:

(i)
$$x^2 \cos 2x$$

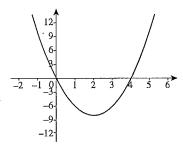
(ii)
$$\log_2 3x$$

(d) Evaluate
$$\int_{1}^{5} \frac{3x}{2x^{2}-1} dx$$
.

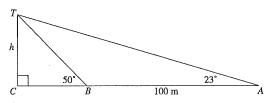
- (e) A radioactive material is decaying exponentially, M = M_oe^{-tt}.
 It takes two years for 100 grams of the material to reduce to 60 grams.
 - (i) Find an expression for -k.
 - (ii) How long would it take the same mass to reduce to 30 grams?

 (Answer correct to two decimal places.)

Marks


3

3


3

Question 13 (15 marks) Use a SEPARATE writing booklet.

- (a) (i) Prove that $\frac{1}{x+2} \frac{1}{x+3} = \frac{1}{x^2 + 5x + 6}$.
 - (ii) Hence show that $\int \frac{dx}{x^2 + 5x + 6} = \log_e \left[\frac{x + 2}{x + 3} \right] + C$
- (b) (i) Find the nature of the stationary points of the curve $y = 2x^3 3x^2 12x + 2$.
 - (ii) Draw a neat sketch of the curve $y = 2x^3 3x^2 12x + 2$ showing the stationary points and the point of inflection for $-2 \le x \le 3$.
- (c) Given the graph of $\frac{dy}{dx}$ below, draw a sketch of a possibility for the graph of y.

(d) The elevation of a tower from point A is 23°. From a point B, 100 metres closer to the tower and on the same horizontal level as A the elevation is 50°.

(i) Show that $\angle BTA = 27^{\circ}$.

(ii) Show that $BT = \frac{100 \sin 23}{\sin 27}$.

(iii) Find the height (h) of the tower. (Answer correct to one decimal place.)

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) If $y = e^{3x}$, prove that y satisfies the equation 2

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 3y = 0.$$

(b) Using integration, find the volume of the sphere generated by the rotation of the semi-circle $y = \sqrt{a^2 - x^2}$ about the x-axis.

Find the area enclosed between the curve $y = \ln x$ and the lines y = 1 and y = 3 using

Simpson's rule with one application. Write your answer to two decimal places.

(d) Given that f''(x) = 2, find the equation of a curve y = f(x) which has a stationary point at the point (1,3).

(e) A given curve has a point of inflection at (1,1) and also passes through (2,3). Find its equation given that f''(x) = 6x + k.

Marks

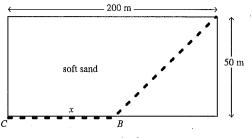
Question 15 (15 marks) Use a SEPARATE writing booklet.

(a) A particle travels such that its acceleration $a \text{ cm/s}^2$ after t seconds is given

Question 16 (15 marks) Use a SEPARATE writing booklet.

- Consider the function $h(x) = \frac{-2x}{x^2-1}$
- (i) Show that h(x) is an odd function.

HSC Mathematics Trial Examination


State the domain of y = h(x).

Marks

When Cait walks on hard sand near the water's edge she maintains an average speed of 1.4 m/s. On soft sand her average speed is 0.8 m/s.

The beach she is walking on is 50 m wide and 200 m long in the shape of a rectangle.

Cait (C) is at one corner of the beach at the water's edge and she plans to walk to the diagonally opposite corner (A) partly on the hard sand (to B) and the remaining distance on the soft sand.

water's edge

Show that the time taken (T) for Cait to do her walk is given by the function:

$$T = \frac{x}{1.4} + \frac{\sqrt{50^2 + (200 - x)^2}}{0.8}$$

Find the value of x that gives the minimum time taken for the walk.

2

3

- (iii) Find the time taken for the walk. (Answer to nearest second.)
- When Archie started his new job \$600 was deposited into a superannuation fund at the beginning of each month. This money was invested at $\frac{1}{2}$ % per month, compounding monthly.

Let \$S be the value of his superannuation fund after 20 years, when he retires.

Show that S = 278611 (to the nearest dollar)

2

After retirement, Archie withdraws \$2500 from his account at the end of each month, without making any further deposits. The account continues to earn interest

at $\frac{1}{2}$ % per month.

Let M be the amount remaining in his account n months after his retirement.

Show that
$$M = (S - 500000) \times 1.005'' + 500000$$

3

(iii) For how long can be continue to withdraw \$2500 each month from his superannuation account?

Copyright © 2013 Neap

HSC Trial Examination 2013

Mathematics

Solutions and marking guidelines

Neap Trial Exams are licensed to be photocopled or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any part buckles of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Copyright © 2013 Neap ABH 49 510 500 645 PO Box 214 St Leonards NSW 1590 Tel: (02) 9438 1386 Fax: (02) 9438 1385

HSC Mathematics Trial Examination

Section I

Sample answer	Syllabus outcomes and marking guide
Question 1 A	1.1, P2, Band 2-3
Using calculator to evaluate the expression you obtain 1.64937453 which is 1.65 to 2 decimal places.	
Question 2 B	1.3, P2, Band 2-3
6x + 2y = 13x - 3y	
-7x = -5y	
x 5	
$\frac{x}{y} = \frac{5}{7}$	·
x: y = 5:7	
Question 3 A	1.1, P3, Band 3-4
Let Cost Price be \$C	
$0.85 \times C = 209.10$	
$C = \frac{209.10}{0.85}$	·
0.00	
C = 246 New Price is	
1.25×246	
= \$307.50	·
Question 4 D	3.1, H5, Band 4-5
$\frac{x}{x+12} = \frac{3}{7}$ $\frac{x}{x+12} = \frac{4}{5}$	
7x = 3x + 36 Now, $5x = 4x + 48$	
4x = 36 x = 48	
x = 9	
Therefore, Extra = 48 - 9 = 39 Ouestion 5 C	
*	1.4, P4, Band 3-4
$2x+1=\pm 7$	
$2x = -1 \pm 7$	
$x = \frac{-1 \pm 7}{2} = 3, -4$	
Question 6 C	12.5, H3, Band 3-4
$\int_{0}^{\ln 5} -e^{-x} dx = \left[e^{-x}\right]_{0}^{\ln 5} = e^{-\ln 5} - e^{-0}$	
$e^{-\ln 5} - e^{-6} = \frac{1}{e^{\ln 5}} - 1 = \frac{1}{5} - 1 = -\frac{4}{5}$	<u> </u>
Question 7 D	1.3, P3, Band 2-3
$m^3 - 5m^2 - 36m$	
$=m(m^2-5m-36)$	
= m(m-9)(m+4)	, and the second

Copyright © 2013 Neag

Sample answer	Syllabus outcomes and marking guide
Question 8 D	7.3, H5, Band 2-3
$-\pi \le \alpha \le 0$	
$-2\pi \le 2\alpha \le 0$	
$\sin 2\alpha = \frac{-\sqrt{3}}{2}$	
basic angle = 60°	
$2\alpha = 60^{\circ}$	
$\alpha = 30^{\circ}$	
$\therefore \alpha = \frac{-\pi}{6}, \frac{-5\pi}{6}$	
Question 9 C	5.5, P4, Band 2-3
Using cosine rule	
$AC^{2} = 6^{2} + 8^{2} - 2 \times 6 \times 8 \times \cos 60^{\circ}$	
$AC^2 = 100 - 48$	
$AC = \sqrt{52}$	
Therefore Perimeter of $\triangle ABC = 6 + 8 + \sqrt{52} = 21$	1.2111
Question 10 A	9.3, P5, Band 3-4
$x^2 + 6x = y - 10$	
$x^2 + 6x + 9 = y - 1$	•
$(x+3)^2 = (y-1)$	
V(-3,1)	

Copyright © 2013 Neap 3

HSC Mathematics Trial Examination

Section II

		Sample answer	Syllabus outcomes and marking guide
Ques	tion	11	
(a)		Gradient is $m = -\frac{2}{3}$	6.2, H5, Band 3-4
.,		3 $\therefore y - y_1 = m(x - x_1)$	Gives correct answer
		$y+2=-\frac{2}{3}(x-6)$	
		3y + 6 = -2x + 12	·
		3y = -2x + 6	
		$y = -\frac{2}{3}x + 2$	
(b)	(i)	$2^{x^2-4x}-\frac{1}{8}=0$	9.4, H3, Band 4-5 • Gives correct answer
		$2^{x^2-4x}=2^{-3}$	Recognises a quadratic equation 1
		$\therefore x^2 - 4x = -3$	
		$x^2-4x+3=0$	
		(x-3)(x-1) = 0	
		x=1,3	
	(ii)	$e^{2x} - 7e^x + 6 = 0$	9.4, H3, Band 4-5
		$(e^x - 6)(e^x - 1) = 0$	Gives correct answer
		$e^x = 1.6$	• Factors quadrane
		$x = \ln 1, \ln 6$	
		$x = 0, \ln 6$	
	(iii)	$2^{x+1} = 3^{x+2}$	9.4, H3, Band 4-5
		$ ln2^{x+1} = ln3^{x+2} $	Gives correct answer
		$(x+1)\ln 2 = (x+2)\ln 3$	Confectly uses log laws to simplify1
		$x(\ln 2 - \ln 3) = 2\ln 3 - \ln 2$	
		$x = \frac{2\ln 3 - \ln 2}{\ln 2 - \ln 3} = -3.7095\dots$	
(c)	(i)	P(Team A gets 100 points) = $\frac{6}{15} \times \frac{5}{14} = \frac{1}{7}$	3.3, P4, Band 3-4
(0)	(1)	15 14 7	• Gives correct answer
	(ii)	P(Team B no second chance) = $\frac{6}{15} \times \frac{9}{14} + \frac{9}{15} \times \frac{6}{14} = \frac{18}{35}$	3.3, H5, Band 3-4
	\/	15 14 15 14 35	Gives correct answer
	(iii)	P(Team C gets 75 points) = $\frac{18}{35} \times \frac{1}{7} = \frac{18}{245}$	3.3, H5, Band 3-4
		33 / 243	• Gives correct answer

Copyright © 2013 Neap

	Sample answer	Syllabus outcomes and marking guide
(d)	$\cos\frac{\pi}{4} - \sin\frac{2\pi}{3}$ $= \frac{1}{\sqrt{2}} - \frac{\sqrt{3}}{2}$ $= \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2}$ $= \frac{\sqrt{2} - \sqrt{3}}{2}$	13.1, H5, Band 3-4 • Gives correct answer with rational denominator
(e)	Area of minor segment: $A = \frac{1}{2}r^{2}(\theta - \sin \theta)$ $A = \frac{1}{2} \times 5^{2}(\frac{5\pi}{6} - \sin \frac{5\pi}{6})$ $A = \frac{1}{2} \times 25(\frac{5\pi}{6} - \frac{1}{2})$ $A = \frac{25(5\pi - 3)}{12}$	13.1, H5, Band 3-4 • Gives correct answer to nearest integer

	Sample answer	Syllabus outcomes and marking guide
Questi	n 12	
(a)	$\frac{1}{\sin^2 \theta} - \frac{1}{\tan^2 \theta}$ $= \frac{1}{\sin^2 \theta} - \frac{\cos^2 \theta}{\sin^2 \theta}$ $= \frac{1 - \cos^2 \theta}{\sin^2 \theta}$ $= \frac{\sin^2 \theta}{\sin^2 \theta} = 1$	5.2, P4, Band 3-4 Correctly simplifies to give result2 Uses correct trigonometric ratio1
(b) (i)	$\angle EBD = \frac{1}{2}(180 - 100) = 40^{\circ},$ Angle sum of an isosceles triangle. $\angle DEF = 180 - 2(180 - 100) = 20^{\circ},$	2.3, P4, Band 2-3 • Gives correct answer
(ii	Angle sum of an isosceles triangle. $\angle ABE = \angle FEB = 60^{\circ}, \text{ Alternate angle in parallel lines}$ are equal.	Gives correct answer
(c) (i)	$\frac{d}{dx} \left[x^2 \cos 2x \right]$ $= 2x \cos 2x + x^2 \times 2 \sin 2x$ $= 2x \left[\cos 2x - x \sin 2x \right]$	13.6, H5, Band 4-5 Gives correct answer
(ii	$\frac{d}{dx} [\log_2 3x]$ $= \frac{d}{dx} \left[\frac{\ln 3x}{\ln 2} \right]$ $= \frac{1}{\ln 2} \times \frac{3}{3x}$ $= \frac{1}{x \ln 2}$	12.5, H3, Band 4-5 • Gives correct answer
(d)	$\int_{1}^{5} \frac{3x}{2x^{2} - 1} dx$ $= \frac{3}{4} \int_{1}^{5} \frac{4x}{2x^{2} - 1} dx$ $= \frac{3}{4} \left[\ln(2x^{2} - 1) \right]_{1}^{5}$ $= \frac{3}{4} \left[\ln(49) - \ln(1) \right]$ $= \frac{3}{4} \ln 49 \text{ or } \frac{3}{2} \ln 7$	12.5, H3, Band 4-5 • Gives correct answer

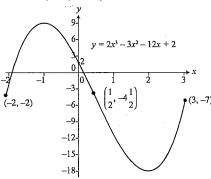
	Sample answer	Syllabus outcomes and marking guide
(e) (i)	$M = M_0 e^{-kt}$ $60 = 100 e^{-2kt}$ $\frac{3}{5} = e^{-2kt}$ $-2k = \ln\left(\frac{3}{5}\right)$ $-k = \frac{1}{2}\ln\left(\frac{3}{5}\right)$	14.2, H4, Band 4-5 Gives correct expression for -k2 Correctly substitutes into decay function1
(ii)	$M = M_0 e^{-h}$ $30 = 100 e^{-h}$ $\frac{3}{10} = e^{-h}$ $-kt = \ln\left(\frac{3}{10}\right)$ $t = \frac{\ln\left(\frac{3}{10}\right)}{-k} = \frac{\ln\left(\frac{3}{10}\right)}{\frac{1}{2}\ln\left(\frac{3}{5}\right)} = \frac{2\ln\left(\frac{3}{10}\right)}{\ln\left(\frac{3}{5}\right)} = 4.7138$ Hence, it will take approx. 4.7 years to decay to just 30 grams.	14.2, H4, Band 4-5 • Gives correct value for time to decay

Copyright © 2013 Neap

HSC Mathematics Trial Examination

	Sample answer	Syllabus outcomes and marking guide
Question	113	
(a) (i)	LHS = $\frac{1}{x+2} - \frac{1}{x+3}$ = $\frac{(x+3) - (x+2)}{x^2 + 5x + 6}$ = $\frac{1}{x^2 + 5x + 6}$ = RHS	1.3, P3, Band 2-3 • Gives correct answer
(ii)	$\int \frac{dx}{x^2 + 5x + 6}$ $= \int \frac{1}{x + 2} - \frac{1}{x + 3} dx$ $= \int \frac{1}{x + 2} dx - \int \frac{1}{x + 3} dx$ $= \ln(x + 2) - \ln(x + 3) + C$ $= \ln\frac{(x + 2)}{(x + 3)} + C$	Correctly shows result
(b) (i)	$y = 2x^3 - 3x^2 - 12x + 2$ $y' = 6x^2 - 6x - 12$ $y' = 6(x^2 - x - 2)$ y' = 6(x - 2)(x + 1) also, y'' = 12x - 6 Stationary points at (2,-18) and (-1,9) When $x = 2$, $y'' = 18 > 0$ therefore a minimum When $x = -1$, $y'' = -18 < 0$ therefore a maximum.	Correctly shows minimum and maximum points

Sample answer

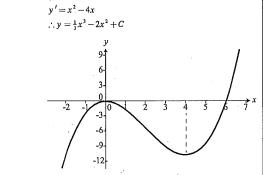

(ii) Inflections:

v' = 12x - 6 = 0				
1 1	х	0	0.5	1
$\therefore x = \frac{1}{2}, y = -4\frac{1}{2}$	y"	-6	0	+6

Since sign change in 2nd derivative exists then inflection occurs at

Intercepts:

When x = 0, y = 2, y-intercept is (0,2).



Syllabus outcomes and marking guide

- 10.4, H5, Band 4-5
- Gives correct curve, showing all features as required.....4
- Gives correct sketch but not showing all features3
- Makes significant progress towards
- Draws a sketch that resembles the required curve.....1

Note; must label axes, show minimum and maximum points and inflection as well as intercept.

- Gives an incorrect cubic function,

Note: this is just one possibility.

 $\frac{dy}{dx} = (x - 0)(x - 4)$

(c)

10.	.o, 110, Dana 4-5
•	Draws correct graph clearly showing
	stationary points when $x = 0$, $x = 4$

		Sample answer	Syllabus outcomes and marking guide
(d)	(i)	$\angle ATB + \angle TAB = 50^{\circ}$, external angle of triangle is sum of internal opposite angles.	5.5, H5, Band 2-3 Gives correct answer
		$\angle ATB + 23^{\circ} = 50^{\circ}$ $\angle ATB = 50 - 23$ $\angle ATB = 27^{\circ}$	
	(ii)	Using the Sine Rule, $\frac{BT}{\sin 23} = \frac{100}{\sin 27}$ $BT = \frac{100 \sin 23}{\sin 27}$	5.5, H5, Band 3-4 • Correctly shows <i>BT</i> 1
	(iii)	To find the height of Tower: T h 50° B 100m A $\sin 50 = \frac{h}{BT}$ $h = BT \sin 50$ $h = \frac{100 \sin 23}{\sin 27} \times \sin 50$ $h = 65.93$ The height of the tower is 65.9 metres	5.5, H5, Band 4-5 • Correctly finds h

10

$y = e^{3x}, y' = 3e^{3x}, y'' = 9e^{3x}$ $HS = \frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 3y$ $= 9e^{3x} - 2 \times 3e^{3x} - 3 \times e^{3x}$ $= 9e^{3x} - 6e^{3x} - 3e^{3x}$ $= 0$ $= RHS$ $Y = \pi \int_{-e}^{e} (\sqrt{e^2 - x^2})^2 dx$ $Y = \pi \int_{-e}^{e} (e^2 - x^2) dx$ $Y = \pi \left[e^3 \left(a \right) - \frac{e^3}{3} \right]_{-e}^{e}$ $Y = \pi \left[e^3 \left(a \right) - \frac{e^3}{3} \right] - \pi \left[e^3 \left(-a \right) - \frac{(-a)^3}{3} \right]$ $Y = \pi \left[\frac{2}{3} e^3 \right] - \pi \left[-\frac{2}{3} e^3 \right]$	12.4, H3, Band 3-4 • Shows result as required
$HS = \frac{d^{2}y}{dx^{2}} - 2\frac{dy}{dx} - 3y$ $= 9e^{3x} - 2 \times 3e^{3x} - 3 \times e^{3x}$ $= 9e^{3x} - 6e^{3x} - 3e^{3x}$ $= 0$ $= RHS$ $Y = \pi \int_{-s}^{s} (\sqrt{a^{2} - x^{2}})^{2} dx$ $Y = \pi \int_{-s}^{s} (a^{2} - x^{2}) dx$ $Y = \pi \left[a^{2}(a) - \frac{a^{3}}{3}\right] - \pi \left[a^{2}(-a) - \frac{(-a)^{3}}{3}\right]$	Shows result as required
$= 9e^{3x} - 2 \times 3e^{3x} - 3 \times e^{3x}$ $= 9e^{3x} - 6e^{3x} - 3e^{3x}$ $= 0$ $= RHS$ $= \int_{-e}^{e} \sqrt{a^2 - x^2} dx$ $= \pi \int_{-e}^{e} (\lambda e^{2} - x^{2})^{2} dx$ $= \pi \left[e^{3} (a^{2} - x^{2}) - a^{3} ($	Correctly finds derivatives
$= 9e^{3x} - 2 \times 3e^{3x} - 3 \times e^{3x}$ $= 9e^{3x} - 6e^{3x} - 3e^{3x}$ $= 0$ $= RHS$ $= \int_{-e}^{e} \sqrt{a^2 - x^2} dx$ $= \pi \int_{-e}^{e} (\lambda e^{2} - x^{2})^{2} dx$ $= \pi \left[e^{3} (a^{2} - x^{2}) - a^{3} ($	11.4, H8, Band 4-5 • Correctly substitutes and simplifies 3 • Correctly integrates 2 • Correctly substitutes into volume
$= 9e^{3x} - 6e^{3x} - 3e^{3x}$ $= 0$ $= RHS$ $' = \pi \int_{-s}^{s} \sqrt[3]{dx}$ $' = \pi \int_{-s}^{s} (\sqrt{a^2 - x^2})^2 dx$ $' = \pi \int_{-s}^{s} (a^2 - x^2) dx$ $' = \pi \left[a^2 x - \frac{x^3}{3} \right]_{-s}^{s}$ $' = \pi \left[a^2 (a) - \frac{a^3}{3} \right] - \pi \left[a^2 (-a) - \frac{(-a)^3}{3} \right]$	Correctly substitutes and simplifies 3 Correctly integrates
$= 0$ $= RHS$ $' = \pi \int_{-s}^{s} y^{2} dx$ $' = \pi \int_{-s}^{s} (\sqrt{a^{2} - x^{2}})^{2} dx$ $' = \pi \int_{-s}^{s} (a^{2} - x^{2}) dx$ $' = \pi \left[a^{2} x - \frac{x^{3}}{3} \right]_{-s}^{s}$ $' = \pi \left[a^{2} (a) - \frac{a^{3}}{3} \right] - \pi \left[a^{2} (-a) - \frac{(-a)^{3}}{3} \right]$	Correctly substitutes and simplifies 3 Correctly integrates
$= RHS$ $Y = \pi \int_{-s}^{s} y^{2} dx$ $Y = \pi \int_{-s}^{s} (\sqrt{s^{2} - x^{2}})^{2} dx$ $Y = \pi \int_{-s}^{s} (a^{2} - x^{2}) dx$ $Y = \pi \left[a^{2} x - \frac{x^{3}}{3} \right]_{-s}^{s}$ $Y = \pi \left[a^{2} (a) - \frac{a^{3}}{3} \right] - \pi \left[a^{2} (-a) - \frac{(-a)^{3}}{3} \right]$	Correctly substitutes and simplifies 3 Correctly integrates
$V' = \pi \int_{-s}^{s} y^{2} dx$ $V' = \pi \int_{-s}^{s} \left(\sqrt{a^{2} - x^{2}} \right)^{2} dx$ $V' = \pi \int_{-s}^{s} (a^{2} - x^{2}) dx$ $V' = \pi \left[a^{2} x - \frac{x^{3}}{3} \right]_{-s}^{s}$ $V' = \pi \left[a^{2} (a) - \frac{a^{3}}{3} \right] - \pi \left[a^{2} (-a) - \frac{(-a)^{3}}{3} \right]$	Correctly substitutes and simplifies 3 Correctly integrates
	Correctly substitutes and simplifies 3 Correctly integrates
	Correctly integrates
$y' = \pi \int_{-a}^{a} (a^{2} - x^{2}) dx$ $y' = \pi \left[a^{2} x - \frac{x^{3}}{3} \right]_{-a}^{a}$ $y' = \pi \left[a^{2} (a) - \frac{a^{3}}{3} \right] - \pi \left[a^{2} (-a) - \frac{(-a)^{3}}{3} \right]$	Correctly substitutes into volume
$y' = \pi \int_{-a}^{a} (a^{2} - x^{2}) dx$ $y' = \pi \left[a^{2} x - \frac{x^{3}}{3} \right]_{-a}^{a}$ $y' = \pi \left[a^{2} (a) - \frac{a^{3}}{3} \right] - \pi \left[a^{2} (-a) - \frac{(-a)^{3}}{3} \right]$	
$' = \pi \left[a^{2} x - \frac{x^{3}}{3} \right]_{-s}^{s}$ $' = \pi \left[a^{2} (a) - \frac{a^{3}}{3} \right] - \pi \left[a^{2} (-a) - \frac{(-a)^{3}}{3} \right]$	formula
$y' = \pi \left[a^2 \left(a \right) - \frac{a^3}{3} \right] - \pi \left[a^2 \left(-a \right) - \frac{\left(-a \right)^3}{3} \right]$	
$y' = \pi \left[a^2 \left(a \right) - \frac{a^3}{3} \right] - \pi \left[a^2 \left(-a \right) - \frac{\left(-a \right)^3}{3} \right]$	
, , , , ,	
, , , , ,	
$V = \pi \left[\frac{2}{3} a^3 \right] - \pi \left[-\frac{2}{3} a^3 \right]$	
$r'=\pi\left[\frac{1}{3}a^3\right]-\pi\left[-\frac{1}{3}a^3\right]$	
	'
(4a	
$=\frac{3}{3}\pi a$	
o find area to y-axis need a $f(y)$	11.3, H4, Band 4-5
$J_{\text{OW}} v = \ln v \text{ or } v = e^{v} \text{ that is } f(v) = e^{v}$	Gives correct answer to
.,	2 decimal places
impson's rule:	Correctly applies Simpson's rule 2
$A \approx \frac{b-a}{a} \left[f(a) + 4 f(\frac{a+b}{2}) + f(b) \right]$	• Changes to f(y)
U	
$4 \approx \frac{3}{6} [f(1) + 4f(2) + f(3)]$	
الاستام المالية المالي	
$4 \approx \frac{3}{3} [e + 4e + e]$	
4≈17.45°	
f''(x) = 2	11.2, H5, Band 4-5
` '	Correctly integrates and finds the second
	constant
	Correctly integrates and finds the first
•	constant
nd	Correctly integrates once
·	
and the second of the second o	
-	· ·
•	
	or find area to y-axis need a $f(y)$ Now, $y = \ln x$ so $x = e^y$, that is $f(y) = e^y$ impson's rule: $A \approx \frac{b-a}{6} \left[f(a) + 4 f(\frac{s+b}{2}) + f(b) \right]$ $A \approx \frac{3-1}{6} \left[f(1) + 4 f(2) + f(3) \right]$ $A \approx \frac{1}{3} \left[e^1 + 4e^2 + e^3 \right]$ $A \approx 17.45$ $A \approx 17.45$ We know that when $x = 1$, $f'(x) = 0$ dence, $C_1 = -2$ $A \approx 17.45$ We know that when $x = 1$, $f'(x) = 0$ dence, $C_1 = -2$ $A \approx 17.45$ We know that when $x = 1$, $f'(x) = 0$ dence, $C_1 = -2$ $A \approx 17.45$ We know that when $x = 1$, $f'(x) = 0$ dence, $C_1 = -2$ and so $A \approx 17.45$ A

	Sample answer	Syllabus outcomes and marking guide
(e)	f''(x) = 6x + k Since there is an inflection at (1,1), then $0 = 6(1) + k$ k = -6 f''(x) = 6x - 6 $f''(x) = 3x^2 - 6x + C_1$ $f(x) = x^3 - 3x^2 + C_1x + C_2$ Since the function passes through (1,1) and (2,3), then $1 = 1 - 3 + C_1 + C_2$ and $2C_1 + C_2 = 7$ Therefore, $C_1 = 4$ and $C_2 = -1$ Hence, $f(x) = x^3 - 3x^2 + 4x - 1$	 10.8, H5, Band 4-5 Writes the correct expression for f(x) Solves to find C₁ and C₂

12

******	Sample answer	Syllabus outcomes and marking guide
Questi (a)	on 15 $\frac{d^2x}{dt^2} = 2t$ $\frac{ds}{dt} = t^2 + C_1$ When $t = 0$, $\frac{ds}{dt} = 0$. $C_1 = 0$ $\frac{ds}{dt} = t^2$ $s = \frac{1}{3}t^3 + C_2$ When $t = 1$, $s = 10$. $C_1 = 9\frac{2}{3}$ $s = \frac{1}{3}t^3 + 9\frac{2}{3}$ When $t = 3$, $s = \frac{1}{3} \times 27 + 9\frac{2}{3} = 18\frac{2}{3}$ Therefore, particle moves $8\frac{2}{3}$ metres in the next	14.3, H5, Band 4-5 • Correctly finds how far the particle travels in the next 2 seconds
(b)	2 seconds. $x \text{ km}$ $x $	5.4, H5, Band 4-5 • Correctly applies Sine Rule to obtain answer

	Sample answer	Syllabus outcomes and marking guide
(c)	Distance travelled by pendulum	7.3, H5, Band 3-4
`,	$= 3 + 2 + \frac{4}{3} + \cdots$ $S_{\infty} = \frac{a}{1 - r}$ $S_{\infty} = \frac{3}{1 - \frac{2}{2}}$	Gives the correct answer
	$S_{\infty} = \frac{9}{3-2} = 9$ The pendulum swings a total distance of 9 metres.	
(d) (i)	$\frac{2}{x-a} + \frac{k}{x} + \frac{8}{x+a} = 0$ $\frac{2x(x+a) + k(x-a)(x+a) + 8x(x-a)}{x(x-a)(x+a)} = 0$ $\frac{2x^2 + 2ax + kx^2 - ka^2 + 8x^2 - 8ax}{x(x-a)(x+a)} = 0$ $\frac{(10+k)x^2 + (-6a)x - (ka^2)}{x(x-a)(x+a)} = 0$ $(10+k)x^2 + (-6a)x - (ka^2) = 0$	9.2, P4, Band 4-5 Correctly writes the given expression as a quadratic
(ii)	For the roots to be equal, $\Delta = 0$, i.e., $36a^2 + 4(10+k)(ka^2) = 0 + 4a^2$ 9 + (10+k)k = 0 $k^2 + 10k + 9 = 0$ (k+9)(k+1) = 0 k = -1, -9	 9.3, P4, Band 5-6 Correctly finds the values for k 2 Writes an expression for Δ = 0 1
(iii		 9.3, P4, Band 5-6 Using k = -1 to find values for x1

	Sample answer	Syllabus outcomes and marking guide
Question 16		-
a) . (i)	$h(x) = \frac{-2x}{x^2 - 1}$	4.2, P5, Band 3-4
.) (1)	x -1	• Shows $h(x)$ is an odd function
	$h(-x) = \frac{-2(-x)}{(-x)^2 - 1}$	
	` '	
	$h(-x) = \frac{2x}{x^2 - 1} = -\frac{-2x}{x^2 - 1} = -h(x)$	
	Therefore, $h(x)$ is odd.	·
(ii)	Domain of $h(x)$ is: $x \in R$, $x \neq \pm 1$	4.1, P5, Band 3-4
(11)	Dollani of N(X) is xery x = 11	Correctly writes the domain
		for <i>h</i> (<i>x</i>)
	_ d ₁ , d ₂	10.6, H5, Band 4-5
) (i)	$T = \frac{d_1}{s_1} + \frac{d_2}{s_2}$	Shows required result
	$d_1 = x$, $s_1 = 1.4$, $d_2^2 = 50^2 + (200 - x)^2$, $s_2 = 0.8$	Uses distance-speed relationship to establish total time
	$T = \frac{x}{1.4} + \frac{\sqrt{50^2 + (200 - x)^2}}{0.8}$	
	7.7	10.6, H5, Band 5-6
(ii)	$T = \frac{x}{1.4} + \frac{\sqrt{50^2 + (200 - x)^2}}{0.8}$	Writes the correct result
	1,1	Establishes quadratic to solve
	$T = \frac{10x}{14} + \frac{10\sqrt{x^2 - 400x + 42500}}{8}$	Correctly differentiates
	dT = 10 $5(2x - 400)$	
	$\frac{dT}{dx} = \frac{10}{14} + \frac{5(2x - 400)}{8\sqrt{x^2 - 400x + 42500}}$	
	For a stationary point $\frac{dT}{dx} = 0$	
		· ·
	$\frac{10}{14} = \frac{-10(x - 200)}{8\sqrt{x^2 - 400x + 42500}}$	
	$8\sqrt{x^2 - 400x + 42500} = 14(200 - x)$	
	$8\sqrt{x^2 - 400x + 42500} = 14(200 - x)$ $33x^2 - 13200x + 1280000 = 0$	
	$x \approx 165.18 \text{ (since } x < 200)$	
	when $x = 160$	•
	$\frac{dT}{dr} = -0.0665 < 0$	·
	when $x = 170$	
•	$\frac{dT}{dx} = +0.071 > 0$	
	Hence, $x = 165.18$ is a minimum.	
(iii)	At $x = 165.18$,	10.6, H5, Band 3-4
` '	T = 194.1 seconds (or 3 minutes and 14 seconds)	Gives the correct value for time

Copyright © 2013 Neap

HSC Mathematics Trial Examination

	Sample answer	Syllabus outcomes and marking guide
(c) (i)	$S = 600 \times 1.005^{240} + 600 \times 1.005^{239} + + 600 \times 1.005^{4}$ $S = 600 \left(1.005 + 1.005^{2} + 1.005^{3} + + 1.005^{240} \right)$ Using sum of a geometric series, $S = 600 \times \frac{1.005 \left(1.005^{240} - 1 \right)}{1.005 - 1}$ The amount in the superannuation fund after 20 years is \$278 611.	7.5, H5, Band 5-6 Correctly shows the value of superannuation 2 Writes the amount of superannuation as a geometric series
(ii)	$A_{i} = S \times 1.005 - 2500$ $A_{2} = S \times 1.005^{2} - 2500 \times 1.005 - 2500$ $A_{3} = S \times 1.005^{3} - 2500 \times 1.005^{2} - 2500 \times 1.005 - 2500$ \vdots $A_{n} = S \times 1.005^{n} - 2500 \times 1.005^{n-1} - \dots - 2500 \times 1.005 - 2500$ $A_{n} = S \times 1.005^{n} - 2500 \left[1.005^{n-1} + \dots + 1.005 + 1\right]$ $A_{n} = S \times 1.005^{n} - 2500 \times \frac{1\left(1.005^{n} - 1\right)}{1.005 - 1}$ $A_{n} = S \times 1.005^{n} - 500000 \left(1.005^{n} - 1\right)$ $A_{n} = \left(S - 500000\right) \times 1.005^{n} + 500000$	7.5, H5, Band 5-6 Shows the result required
(iii)	Putting $A_n = 0$ $1.005^n = \frac{-500000}{(S - 500000)}$ $1.005^n = \frac{500000}{(500000 - 278611)}$ $n \log 1.005 = \log \left[\frac{500000}{(500000 - 278611)} \right]$ $n = \frac{\log \left[\frac{500000}{(500000 - 278611)} \right]}{\log 1.005}$ $n = 163.344$ That is, Archie can withdraw money at a rate of \$2500 per month for 163 months or 13.6 years	7.5, H5, Band 5-6 Writes the correct answer