Nelson Maths 9 for the CSF II Homework and Assessment Sheets | Name: | | | | | | | | | Cla | ss: _ | | | | | | | | |---|---|---------------------|-----------------------------------|---|--|--|--|-------------------------------------|--------------|-----------------------|-----------------|----------|--------------|--------|-------|-----------------|----------| | Due date: | | | | | _ | Pa | rent | s sig | | | | | | | | | | | Level 5 | Level 5 /10 | | | | | Level 6 | | | | | | | | | /2 | Part A: Level 5 | | | | | | Column contra | ANTERNA DE | markana na katalog a k a | | | in who are | | | es con | | 700 Vice (1990) | 800,0000 | | | .Liaa in | . ا | a. Ca | | | | | | | | | | | | | | | | Express each of these ra 1 120:30 = | | simpie | St IC | orm | l. | , | ? ^ | 0.10 | 2 _ | | | | | | | | | | | | | | | | | | |) = <u> </u> | | | | | | | | | | Janelle went on a bicycl | | | | | | | | _ | | | | | | | | | | | 0. 4 00 1 | in 2 har | | | | | | | | | | | | | | | | _ | | Stage A: 20 km | 111 2 1101 | ars | Sta | age | B: 45 | 5 km i | in 3 | hou | rs | St | age | C: 1 | 0 km | in | 0.5 h | ours | 3 | | 3 Calculate her rate of | | | | | | | | | | | _ | | | | | | | | | f travel | in km | /h f | or e | each | stage | : A _ | | | | B _ | | | | C_ | | | | 3 Calculate her rate of4 How long would it | f travel
take he | in km | /h f | or e | each
istar | stage | : A ₋
50 l |
km a | t 15 | —
km/ | В_
h? | | | | C_ | | | | 3 Calculate her rate of4 How long would itFive different strength of | f travel
take he
cordials | in km, or to tra | /h f
ivel
C, E | or e
a d
) ar | each
istar
nd <i>E,</i> | stage
nce of
are n | : <i>A</i> ₋
50 I | km a | t 15 |
km/
yrup | B_
h?
and |
d wa | ter: | | C_ | | | | 3 Calculate her rate of4 How long would itFive different strength ofA 1 syrup:5 was | f travel
take he
cordials
ater | in km
er to tra | /h forvel C, E B | or e
a d
a ar
3 sy | each
istar
nd <i>E,</i>
yrup | stage
nce of
are n | : A ₋
50 l
nado
vate | km a
e usi
r | t 15 |
km/
yrup | B_
h?
and |
d wa | ter: | | C_ | | | | 3 Calculate her rate of 4 How long would it Five different strength of A 1 syrup: 5 wa D 0.5 syrup: 10 | f travel
take he
cordials
ater
water | in km,
er to tra | /h forvel C, E B E | or e
a d
a ar
3 sy
5 sy | each
istar
nd <i>E,</i>
yrup
yrup | stage
nce of
are n
: 10 w | : A ₋
50 I
nado
vate
vate | km a
e usi
r | t 15 | —
km/
yrup
(| B_
h?
and |
d wa | ter: | | C_ | | | | 3 Calculate her rate of 4 How long would it Five different strength of A 1 syrup:5 was D 0.5 syrup:10 5 Which cordial has the | f travel
take he
cordials
ater
water
he high | in km, or to tra | /h forvel C, E B E io of | or e
a d
o ar
o sy
5 sy
f wa | each
istar
nd <i>E,</i>
yrup
yrup
ater: | stage
nce of
are n
: 10 w
: 15 w | : A . 50 l nade vate vate vate | cm a
e usi
r
r | t 15 | —
km/
yrup
(| B_
h?
and |
d wa | ter: | | C_ | | | | 3 Calculate her rate of 4 How long would it Five different strength of A 1 syrup:5 was D 0.5 syrup:10 5 Which cordial has the 6 Which cordial would | f travel
take he
cordials
ater
water
he high | in km, r to tra | /h forwel C, E B E io of song | a d ar | each istar nd <i>E,</i> yrup yrup ater: | stage
are of
are n
: 10 w
: 15 w | : A .
50 l
nade
vate
vate | km a
e usi
r
r
— | t 15 | —
km/
yrup
(| B_
h?
and |
d wa | ter: | | C_ | | | | 3 Calculate her rate of 4 How long would it Five different strength of A 1 syrup:5 was D 0.5 syrup:10 5 Which cordial has the 6 Which cordial would | f travel
take he
cordials
ater
water
he high | in km, r to tra | /h forwel C, E B E io of song | a d ar | each istar nd <i>E,</i> yrup yrup ater: | stage
are of
are n
: 10 w
: 15 w | : A .
50 l
nade
vate
vate | km a
e usi
r
r
— | t 15 | —
km/
yrup
(| B_
h?
and |
d wa | ter: | | C_ | | | | 3 Calculate her rate of 4 How long would it Five different strength of A 1 syrup:5 was D 0.5 syrup:10 5 Which cordial has the 6 Which cordial would | f travel take he cordials ater water he high d taste | in km, r to tra | /h favel C, L B E io of ong | a d ar | each istar nd <i>E,</i> yrup yrup ater: | stage
are of
are n
: 10 w
: 15 w | : A .
50 l
nade
vate
vate | km a
e usi
r
r
— | t 15 | —
km/
yrup
(| B_
h?
and |
d wa | ter: | wa | C_ | | | | 3 Calculate her rate of 4 How long would it Five different strength of A 1 syrup:5 was D 0.5 syrup:10 5 Which cordial has the | f travel take he cordials ater water he high d taste | in km, or to tra | /h favel C, L B E io of ong | a d ar | each istar nd <i>E,</i> yrup yrup ater: | stage
are of
are n
: 10 w
: 15 w | : A .
50 l
nade
vate
vate | km a
e usi
r
r
— | t 15 | —
km/
yrup
(| B_
h?
and |
d wa | ter:
p:20 | wa | C_ | | | ## Part B: Level 6 Complete the table of information about scale drawings. State if each is an enlargement or a reduction. | | Object | Scale drawing | Scale ratio or scale factor | Enlargement or reduction? | |---|--------|---------------|-----------------------------|---------------------------| | 1 | 20 cm | | 1:20 | | | 2 | 1 m | 1 cm | | | | 3 | | 20 cm | 40:1 | | | Three junior employees earn wages in the ratio 5:3:2; the oldest receives the most, the youngest least. | |---| | 4 If the oldest gets \$10, what would the youngest get? | | 5 If they received \$100 between them, what would each get?, | | 6 If the middle one gets \$15, how much would the oldest and youngest receive?, | | Calculate the heart rates in order to insert the correct sign (= , > or <) in these statements. 7 880 beats in 10 minutes 688 beats in 8 minutes 8 65 beats/min 990 beats in 15 minutes 9 4560 beats/h 1520 beats in 20 minutes | | 10 Convert 75 km/h into km/s | | The quadrilaterals below are exactly in proportion. What are the values of <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> ? 11 13 14 | | $\begin{array}{c} 12 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ | | Circle the fastest growth rate in each pair. | | 15 100 cm in 5 years or 2.5 m in 20 years | | 16 36 mm in 15 min or 1 m in 2 hours | | 17 140 km in 2 hours or 12 km in 10 min | | Divide each of the following lengths into the ratio indicated in the bracket. | | 18 55 m (10:1) 19 72 m (5:4) | | 20 At a football match, the ratio of Essendon to Carlton fans was 7:5. There were 96 000 at the ground. How many supported Essendon? | | Three girls in a family receive pocket money in 1999 according to their age ratio 4:3:1 when the oldest was 8 years old and received \$8. Every 2 years their money is doubled, but kept in the same ratio. In what year will the middle child's pocket money be three times what the oldest received in 1999? | | Write the mathematical meanings of: Rate | | Speed |